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Abstract
Descriptors (topological, mathematical and quantum) were used to generate quantitative construction property

connections (QSPR) for the pKa of 80 phenols. The informational index was divided into 56 preparation and 24

test sets, and models were built using the preparation set's incomplete least squares (PLS) relapse. The

consistency and predictive power of the best acquired QSAR models were achieved through internal approval, Y

randomization, and external approval, and their pertinence area was confirmed by the influence technique. The

benefits of the various direct relapse investigations' measurable boundaries. Standard deviation (S), standard

deviation error of prediction (SDEP, External validation coefficient test), determination coefficient R², cross-

validated R² (Q²) (SDEPext). The cross-validated R² (test Q²ext) values (95.68%, 95.22%, 0.304, 0.312, 0.292,

and 96.24%, respectively) attest to the model's good fit.
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Introduction

A fundamental physical property of drugs is the acid

dissociation constant, which describes the ionization of

compounds in aqueous solution. When comparing the

properties of neutral and ionized species, it is common

to find differences in solubility, and thus absorption,

bioreactivity, and toxicity. Furthermore, for financial

reasons, analysts work on developing strategies to

anticipate, which can be less tedious, more financial,

and simple. One of the primary options is to use a

quantitative construction natural action/property

relationship (Dearden, 2016; McKinney et al., 2000).

which includes numerically determined decisions that

quantitatively depict movement and property regarding

atomic characteristics, such as descript-pinnacles of

compound designs created with PC-based innovation

(ROY et al., 2015). The method of quantitative

relationships with structure of activity was used to

predict the calculation of the ionization constant for a

group of phenols.

Material and Methods

A Quantitative Structure-Activity Relationshio (QSAR)

modeling was developed to study the constant acidity

of a series of phenols using descriptors calculated by

Dragon version 5.3 (Todeschini et al., 2006) and hyper

hem 7.5 software (HYPERCHEM™ RELEASE

7.2000). The genetic algorithm (LEARD et al., 1992) is

thought to be superior to other variable determination
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techniques. As a result, factor determination on the

preparation set was performed, involving genetic

algorithm (GA) in Todeschini's adaptation of Moby

Digs (TODESCHINI et al., 2009) by maximizing the

variance explained by cross-validation by omitting an

observation. Ordinary least squares regression and

genetic algorithm selection of explanatory variable

subsets ( GA -VSS) (Pavan et al., 2004). The crossover

and mutation processes of the genetic algorithm in the

Moby Digs software are controlled by a parameter T

ranging from 0 to 1. The genetic algorithm's

parameters were set as follows: Pop = 100 for the

model population; T = 0.5 to balance the roles of the

two processes of crossover and mutation.

The use of the GA-VSS method has resulted in several

good models for predicting acid dissociation constant

at logarithmic scale (pka=-logka) based on various sets

of molecular descriptors. The The mean atomic van

der Waals volume( Mv ) and mean electrotopological

state (Ms) were used to create the best model.

21

Experimental data

Compounds evaluated are listed in Table 1.

Acidity ka (pka=-logka) (Pirsellova et al.,1998).

The experimental values of phenol dissociation

constants were discovered in the literature. Mv denotes

the mean atomic van der Waals volume (scaled on the

carbon atom). Divide the sum of the van der Waals

volumes by the number of atoms to get the mean

volume (Mv).

Object N° Status Y Exp. PKA Ms Mv

2,3,4,5-tetrachlorophenol 1 Training 6.22 6.22 2.98 0.85

2,3,5 -trimethylpheno 2 Training 10.48 10.48 2.27 0.6

2,3,5,6-tetrafluorophenol 3 Training 5.99 5.99 4.39 0.67

2,3-dimethylphenol 4 Training 10.34 10.34 2.33 0.61

2,4-dibromophenol 5 Training 7.87 7.87 2.5 0.81

2,4-dimethylphenol 6 Training 10.52 10.52 2.33 0.61

2,6-difluorophenol 7 Training 7.51 7.51 3.67 0.66

2,6-diphenylphenol 8 Training 9.92 9.92 2.12 0.69

2-acetylphenol 9 Training 9.19 9.19 2.8 0.63

2-allylphenol 10 Training 9.92 9.92 2.38 0.63

2-bromo-4-methylphenol 11 Training 8.67 8.67 2.42 0.69

2-chlorophenol 12 Training 8.55 8.55 2.68 0.69

2-ethylphenol 13 Training 10.2 10.2 2.31 0.61

2hydroxy benzaldhyde 14 Training 8.34 8.34 2.93 0.65

2-hydroxybenzamide 15 Training 8.36 8.36 3.00 0.64

2-hydroxybenzylalcohol 16 Training 9.92 9.92 2.76 0.61

2-isopropylphenol 17 Training 10.4 10.4 2.27 0.6

2-methylphenol 18 Training 10.26 10.26 2.42 0.62

2-tert-butylphenol 19 Training 10.62 10.62 2.23 0.59

3 -methoxyphenol 20 Training 9.65 9.65 2.54 0.61

3,4,5,6-tetrabromo-2-methylphenol 21 Training 6.42 6.42 2.42 0.89

3,4,5-trimethylpheno 22 Training 10.5 10.5 2.27 0.6

3,5-dichlorophenol 23 Training 8.18 8.18 2.80 0.75

3-acetylphenol 24 Training 9.19 9.19 2.80 0.63

3-chlorophenol 25 Training 9.1 9.1 2.68 0.69

3-cyanophenol 26 Training 8.61 8.61 2.87 0.69

3-ethylphenol 27 Training 10.07 10.07 2.31 0.61

3-hydroxybenzaldehyde 28 Training 9 9 2.93 0.65

Table 1. Data matrix of independent variables (molecular descriptors) and dependent variables

nAT

Sv
Mv  [1]

where nAT denotes the number of atoms and Sv

denotes the sum of the van der Waals volumes





A

i

iVSv
1

mean electrotopological condition (Ms) (Todeschini et

al., 2000). Divide Ss by the number of non-hydrogen

[2]
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Object N° Status Y Exp. PKA Ms Mv

3-iodophenol 29 Training 8.88 8.88 2.43 0.75

3-methylphenol 30 Training 10 10 2.42 0.62

3-phenylphenol 31 Training 9.63 9.63 2.23 0.67

3-tert-butylphenol 32 Training 10.12 10.12 2.23 0.59

4-bromo-2,6-dimethylpheno 33 Training 10.01 10.01 2.34 0.66

4-bromo-6-chloro-2-methylphenol 34 Training 8.2 8.2 2.55 0.73

4-chloro-2-iso-propyl-5-methylphenol 35 Training 10.03 10.03 2.34 0.62

4-chloro-3 -methylphenol 36 Training 9.55 9.55 2.57 0.66

4-chloro-3,5-dimethylpheno 37 Training 9.7 9.7 2.48 0.64

4-chloro-3,5-dimethylphenol 38 Training 9.7 9.7 2.48 0.64

4-heptyloxyphenol 39 Training 10.7 10.7 2.12 0.57

4-hexyloxyphenol 40 Training 10.7 10.7 2.17 0.58

4-hromo-2,6-dichlorophenol 41 Training 6.4 6.40 2.76 0.83

4-hydroxyazobenzene 42 Training 8.78 8.78 2.33 0.68

4-hydroxybenzamide 43 Training 9.23 9.23 3.00 0.64

4-hydroxybenzophenone 44 Training 8.89 8.89 2.51 0.68

4-iso-propylphenol 45 Training 10.30 10.3 2.27 0.60

4-methoxyphenol 46 Training 10.20 10.2 2.54 0.61

4-methylphenol 47 Training 10.26 10.26 2.42 0.62

4-propylphenol 48 Training 10.3 10.3 2.23 0.60

4-sec-butylphenol 49 Training 10.3 10.3 2.20 0.59

4-tert-butylphenol 50 Training 10.23 10.23 2.23 0.59

4-tert-pentylphenol 51 Training 10.3 10.3 2.17 0.58

ethyl-3-hydroxybenzoate 52 Training 9.09 9.09 2.75 0.61

methyl-4-hydroxybenzoate 53 Training 9.05 9.05 2.86 0.63

pentabromophenol 54 Training 4.57 4.57 2.48 1.06

pentachlorophenol 55 Training 5.1 5.10 3.05 0.91

phenol 56 Training 9.99 9.99 2.52 0.64

2,3,5-trichloropheno 57 Test 6.75 6.75 2.90 0.80

2,3,6-trimethylphenol 58 Test 10.63 10.63 2.27 0.60

2,3-dichlorophenol 59 Test 7.58 7.58 2.80 0.75

2,4,5 -trichloropheno 60 Test 7.37 7.37 2.90 0.80

2,4,6-tribromophenol 61 Test 6.31 6.31 2.49 0.89

2,4-dichlorophenol 62 Test 7.87 7.87 2.80 0.75

2,5-dichlorophenol 63 Test 7.58 7.58 2.80 0.75

2,5-dimethylphenol 64 Test 10.34 10.34 2.33 0.61

2-bromophenol 65 Test 8.45 8.45 2.51 0.72

2-fluorophenol 66 Test 8.73 8.73 3.17 0.65

2-phenylphenol 67 Test 9.55 9.55 2.23 0.67

2-tert-butyl-4-methylphenol 68 Test 11.39 11.39 2.19 0.58

3,4-dimethylphenol 69 Test 10.32 10.32 2.33 0.61

3,5-dimethylphenol 70 Test 10.15 10.15 2.33 0.61

3-iso-propylphenol 71 Test 10.1 10.1 2.27 0.60

4-butoxyphenol 72 Test 10.6 10.6 2.35 0.59

4-chloro-2-methylphenol 73 Test 9.67 9.67 2.57 0.66

4-cyanophenol 74 Test 7.96 7.96 2.87 0.69

4-ethoxyphenol 75 Test 10.5 10.5 2.43 0.60

4-ethylphenol 76 Test 10 10 2.31 0.61

4-hydroxybenzylcyanide 77 Test 9.52 9.52 2.73 0.66

4-hydroxyphenethylalcohol 78 Test 9.92 9.92 2.63 0.60

methyl-3-hydroxybenzoate 79 Test 9.21 9.21 2.86 0.63

pentafluorophenol 80 Test 5.86 5.86 4.67 0.68

Table 1 (continued). Data matrix of independent variables (molecular descriptors) and dependent variables
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(nSK) to get the mean electrotopological state (Ms): at specified degrees of freedom is determined by the F

statistic, which is calculated from R2 and the number

of data points (df)

The F-ratio test is one of the most well-known

statistical tests, and it is defined as follows:

nSK

Ss
Ms 

Electro topological (Ss) Kier Hall states





A

1i
iSSs

Results and Discussion

Cross-validated. Determination coefficient

calculation formula (R2) Chatterje et al., 2006). R2 The

quality of fit is indicated by the coefficient of

determination (R2), which is calculated as:

 

 










n

1i

2
yi

yi

n

1i

2yiyi

1²R



iy


i
y

where: Yi= ith observed response value;

= ith fitted response;

R2 equals 1 for the ideal model, where the sum of

squared residuals is 0.

The model's ability to fit data worsens as R2's value

deviates from 1. R2 is the multiple correlation

coefficient and its square root (R).

Adjusted determination coefficient (Adjusted R2)

(Besse, 2003).

= mean response; 

 22
a R1
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1n
1

1n
SCT

kn
SCE

1R 









where: n refers to the number of observation and k

number of descriptors.

If the number of descriptors in a model is increased

for a fixed number of observations, R2 values will

always increase, but this will result in a decrease in

degree of freedom and low statistical reliability. As a

result, a high R2 value does not always indicate a

good statistical model that fits the available data

well.

Ratio (The Fisher-Snedécor Coefficient) (Bando et

al., 1994).

The statistical significance of the regression equation

2

2

R1

R

k

k1n
F







Standard deviation (s) (Siegel, 1997).

 
k1n

RSS

k1n

n
1

2
calci;yexpi;y

s





 


It is a metric for dispersion. It describes how data

distribution is done around the average. The closer

it is to zero, the more accurate the adjustment and

prediction.

The Predicted residual sum of squares (Press and

Wilson, 1978; Hastie et al., 2009).

The most important parameter for estimating the

models' true predictive error appears to be the

PRESS (Predicted Residual Sum of Squares)

statistic. Its low value implies that the model

outperforms chance and is statistically significant. It

is calculated using the following equation:

  














 n

1i

2

ih1

ie
PRESS

Residuals (ei). The disparity between observed

and predicted or fitted values. The fitted model

does not account for this aspect of the observation.

An observation's residual is: yi=ith observed

response value;
iy


= ith fitted response.

Leverages( hii) (Press et al,. 1978). Indicate

whether the observed predictor values are unusual

in relation to the rest of the data. High leverage

observations may have a significant impact on the

fitted value, and thus the regression model.

Leverages are obtained from the hat matrix (H),

which is a n x n projection matrix specified as:

Hii = Xi
t(XTX)-1Xi

The ith diagonal element, hi of H, is the leverage of

the ith observation. If hi is large, the ith observation

has out-of-the-ordinary predictors (x1i .x2i……xki),

that is, predictor values that are far from the mean

[10]

[9]

[8]

[7]

[6]

[5]

[4]

[3]
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vector ( ) utilizing the Mahalanobis

distance: n= number of observations, k= number of

predictors, Xki=ith observation of the kth predictor,

= ith predictor mean, X= response matrix, Y=

predictor matrix. Standard deviation error in

calculation defined as (Golbraikh et al., 2002).

24

KXXX ..... 21

kiX

 
n

n
1i iyiy

SDEC

2
 






Standard deviation error of prediction (SDEP) (Roy 

et al., 2015).

n

PRESS
SDEP 

Cross-validated R2 (R2cv) (or Q²) (Consonniv et 

al., 2012), 

 
  

 


n
1 trainytrainobs;y

n
1 trainpred;ytrainobs;y

1Q
2

2

2

A value Q2 > 0.5 is considered good, and a value

Q2 > 0.9 is considered excellent. Q2ext is the

external validation coefficient (Golbraikh et al.,

2002).

here, next refers to the number of test set 

compounds.

where the sum is applied to the test set objects

(ext n).

[15]

[14]

[12]

[11]

[13]

QSAR Model development and validation. 

The optimal model's equation is as follows: 

pKa = 21.216-1.586Ms-12.022Mv

Statistical parameters for the model is presented in 

table 2

//ntr next S Q2 % R² % F

56 24 0.304 95.22 93.64 586.64

R²adj % Q² ext % SDEC SDEP SDEP ext P

95.51 96.24 0.296 0.312 0.292 00

[16]

Table 2

Statistical parameters

Where: ntr = the number of training set); next :the

number of objects in the external set; S = Standard

deviation; F = the Fisher-Snedécor Coefficient; R²

and Q² values attest to the model's good fitting

performance, which is also very significant (great

value of the Fisher parameter F). The model is

robust, with only a 3% difference between R²and

Q².

A value Q² greater than 0.5 is generally considered

good, and a good standard error s = 0.304 and P

less than 0.05 indicates that the regression equation

has statistically significant statistical parameters.

SDEPex= SDEP ; performs better in external

prediction than in internal prediction Q²ex > Q2

criteria of Tropsha et al. (2003).

According to the literature (Golbraikh et al., 2002),

an additional external validation is applied solely to

the test set. A predictive QSPR model must meet

the following conditions, according to Tropsha et

al. (2003) recommended .'s criteria:

15185030
2

2

0

2

.K.and.
R

RR




Q²ext  >0.6 

R²ext >0.7

[17]

[18]

[19]
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

where R is the correlation coefficient between the

calculated and experimental values in the test set;

R²0 (calculated versus observed values) and R0ʹ
2

(observed versus calculated values) are the

coefficients of determination; k and k are slopes of

regression lines through the origin of the calculated

versus observed and the observed versus calculated,

respectively:

ykr
i

y 0 


yky 0r
i




The sums are calculated over all samples in the test

set. The reason for using R0
2 and requiring k values

close to 1 is that when comparing actual versus

predicted properties, an exact fit is required, not

just a correlation. An example of a regression

between observed vs. predicted (Fig. 1) and

predicted vs. observed (Fig. 2) activities for

compounds from an external testset.

Figure 2. Plot predicted of vs. experimental values in 

a regression model

Figure 1. Plot of experimental vs. predicted values in 

a regression model

[20]

[26]

[21]

[22]

[23]

[24]

[25]

[27]
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0.60.924Q2
ext 

0.70.966R2 

151.0.9895K0.3and0.850.016
0.966

0.9500.966

R

RR

2

2
0

2







1.15971.00K0.85and0.3220.0
660.9

450.9660.9

R

RR

2

2
0

2








30005094509500 .... 

Applicability domain of the model (Eriksoon et al.,

2003; Tropsha et al., 2003).

A common definition of the AD is based on the

following leverage values

  XiXXtXt
ihii

1


i=1,2,3………n " or each compound, where i is

the query compound's descriptor row-vector and X

is the matrix of k model descriptor values for n

training set compounds. Compounds with h > h*

(h* being a threshold value equal to 3p/n, where p

is the number of descriptors in the model plus one

and n is the number of compounds in the training

set) are chemically distinct from the training set

compounds and thus outside the AD.

He determined warning leverage (h* = 0.161).

Figure 3 depicts the end result. Chemicals, with the

exception of compounds No. 3, 15, 77, and 79, are

within the AD. Even for chemicals with h values

greater than h*=0.161, the predicted pka values are

close to the experimental values. Furthermore, all

compounds fall within the standard residuals of ±2

(s.d).. As a result, the developed models for these

sets are also reasonable.

Figure 3 

The Williams plot of the leverage 

value against the standardized 

residuals

[28]

[29]

[30]

[31]

[32]

[33]
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Randomization test (Tropsha and Golbraikh,

2007). This is a common technique for ensuring the

robustness of a QSAR model. The dependent-

variable vector, Y-vector, is randomly shuffled in

this test, and a new QSAR model is created using

the original independent-variable matrix.

The low Q² and R². The values obtained after

each shuffle show (Table3) that the good results in

our original model are not due to a random

correlation of the training set.

Iteration R² % Q² %

0 95.68 95.22

1 2.67 00

2 1.99 00

3 4.9 00

4 6.44 00

5 6.19 00

6 6.4 00

7 0.39 00

8 0.13 00

9 0.2 00

10 2.57 00

Table3 

Randomization 

test

Conclusions

The QSAR method was used to predict the acidity

of phenols. We discovered two critical descriptors

that accurately predict the pka (Mw and Me).

The models' validity has been established through

the selection of appropriate statistical parameters.

We found a strong correlation between

experimental and predicted activity values,

indicating that the QSAR model was validated and

of high quality.
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