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Abstract

The increase in atmospheric properties degradation including environmental polarization and ecosystem

degradation has been linked with levels of climatic hazards posed by climatic change. The geographical location

of the Federal Capital Territory of Nigeria in the North Central geo-political zone of Nigeria within the Savannah

vegetation zone of the Wet African sub-region was x-rayed for her atmospheric-climatic-space property of wind,

rainfall and the impact of the meteorological element of rainfall on the erosivity of the area. Downscaling of a

thirty five (35) years climatic data was done. Modelling and simulation was undertaken using geo-statistical and

physical science modelling and simulation packages including QGIS and Statgraphics centurion. Simulated and

modelled data were subjected to statistical analysis using descriptive statistics including P-statistics. Result of the

finding revealed that there exist a shift in the climatic behaviour of the Federal Capital Territory of Nigeria with

projected data significant level at a P-value range at [P-value = 0.654638, P-value = 0.859967 and P-value =

0.859967] of the P-statistics at a 95% significant level (p > = 0.05), hence, validating a past (35 years) and future

(12 years projection) change in the climatic behaviour of the area. Wind velocity impact in the area for the past

35 years has been huge, thus presenting a value range at 81.36km/h-12.6km/h which indicated high sea-land-

atmospheric nexus impact towards the variability that exist in the climatic wellbeing of the area. Wind directional

flux of the area ranges from 22°°-4.8 which also contributed to the change in climatic behavior of the area. There

exist very minimal rainfall impact in the erosivity impact in the area, with a coefficient of Variation at CV=0.16%.
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Introduction

The increased in human suffering including ecological

degradation and atmospheric imbalance, climatic fluc-

tuation and subsequent environmental degradation, land

pollution, eco-radioactivity flux, fragmentation and

destruction of the potential of earth-system properties

has been on a global scale years now (Adiaha et. al.,

2022; Adiaha et. al., 2022 b; Adiaha, 2023) acting like a

barrier to global sustainability. Projected climate

change trend has shown that countries with

geographical disadvantage including countries with

inadequate adaptation and mitigation strategies will

suffer bulk of the climatic hazards which has over the
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years debased humanity (Meza and Silva, 2009).

According to the Fifth Assessment Report (AR5) of

the Intergovernmental Panel on Climate Change

(IPCC), global surface temperature change for the end

of the 21st century is highly likely to exceed 2°C for

representative concentration pathways RCP6.0 and

RCP8.5 (A mathematical model of the general

circulation of a planetary atmosphere or ocean and

based on the Navier-Stoke equations on a rotating

sphere with thermodynamic terms for various energy

sources) (IPCC, 2013). Like other parts of the world,

northern and central Nigeria as well as the whole part

of the country and West Africa in general has

experienced monthly rainfall, temperature including

wind flux variability trend which has being on a

fluctuating frequency for years now (Giannini et. al.,

2008). Climatic variation projections has indicated that

the 21st century will have increased annual rainfall in

West Africa (Giannini et. al., 2008). Current scientific

evidence shows that climate change will continue into

the future regardless of the effectiveness of mitigation

(Tachie-Obeng et. al., 2012). Rain-feed agriculture is

the main food production sources in Nigeria, so food

availability and sustainability are mainly restricted by

rainfall amount and distribution, making the need for

reliable projections for Nigeria highly relevant. Wind

direction generally report the direction of wind flux or

point at which wind originates. Wind speed or wind

velocity is one of three major characteristics of air

movement on par with wind direction and wind gusts.

Wind Speed (or Wind Velocity) has been described as

air moving from high to low pressure (Quill et. al.

2019; Andrews, 2012). Air moving is usually due to

changes in temperature that affects the horizontal

movement of air specified by its speed and direction

measured over the land surface at a height of 10 m

above ground level. decline in the earth wind speed has

been predicted to be impacted as carbon dioxide levels

rise with the Earth's poles warm effect, the implication

of this impact has a declining potential on wind energy

production and plant growth including a resultant

effect on Gulf Stream including other component of

the earth-system properties. Various degradation

processes that affect the sustainability of the earth-

system properties including earth geological processes

and atmospheric wellbeing has been linked with wind

including rainfall (Adiaha et. al. 2020), hence, the

variability of these atmospheric related properties

remains critical for space-earth nexus sustainability.

Global Circulation Models (GCMs) are currently the

tools most commonly used for climate projection. Due

to their rough resolution, typically 300*300 km in the

tropics, they cannot be used for projecting the local

changes in scale required to assess impact and

adaptation measures (Penlap et. al. 2004; Hewitson and

Crane, 2006; IPCC, 2000). The use of empirical models

in the forecast or predicting of future climate is based

on local-scale weather. According to Hewitson and

Crane (2006), empirical downscaling is one means of

circumventing the problem of mismatch because it

derives local climate response to largescale atmospheric

states using more appropriate GCM attributes as

required by impact assessment and adaptation. Many

investigations into short-term variation in projected

rainfall in many parts of the globe including West

Africa has been based on GCMs outputs. Statistical

forecast with downscaling thus plays a critical role and

remains a keysone in the tropics for simulating

projected local-scale climate change. Against the many

challenges posed by the changing climate, the present

research aim at the following objectives:

- Project climatic behaviour of Abuja over a 12 years

future.

-Model wind velocity potential and its impact in Abuja

over a 35 years.

-Period estimating decadal rainfall impact on the

erosivity potential of the area.

Materials and Methods

Study Area

The Federal Capital Territory (FCT) (Fig. 1) is the seat

of the Federal Government of Nigeria (Adiaha, 2019).

The FCT holds a land area of about 8,000 square

kilometres and located within latitude 7º25’ North and

9º20’ North of the Equator and longitude 5º45’ and

7º39’ (James et. al., 2013; Adiaha, 2019). The

temperature of the area has being observed at 25◦C–

27◦C. Annual rainfall of 1632mm and beyond has being

observed in the area, while Highest relative humidity at

20% and above has being recorded in the area.

Figure 1

Study area 

location A = 

Nigeria, B = 

A = Nigeria, 

B = Abujawithin 

Abuja 

C= Gwagwalada
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Climatic and Meteorological Data

Long-term daily rainfall dataset from 1983-2017 were

obtained for Abuja, the Federal Capital Territory of

Nigeria from Nigerian Meteorological Agency. The

climate record was 100% complete (valid values).

Fournier Index

Fournier index (F) (Fournier, 1960) was used to assess

the rainfall erosivity based on monthly average amount

of Precipitation of the most rainy months (mm) and

Average annual quantity of precipitation. The protocol

was done according to the description of Fournier

(1960), thus:

circulation models (GCM) on the regional scale. A five

years (12) years projecting period was undertaken. 2

season (raining and dry season) were taken into account

(by computing such into the model) in the forecasting

projection

Statistical downscaling. Statistical downscaling was

done, where a statistical relationship was developed

between the historical observed climate data and the

output of the climate model for the same historical

period of 1983-2017. The relationship was used to

develop the future climate scenario (data) (as Presented

in Table 3). The process of the statistical downscaling

was combined with bias correction/adjustment

procedure inother to present the best model and the

modelled output.

Modelling. The following sixteen (16) projection

models were tested:

(A) Random walk,

(B) Random walk with drift = 0.0171324,

(C) Constant mean = 33.7395,

(D) Linear trend = 43.4539 + -0.396507 t ,

(E) Quadratic trend = 23.3575 + 2.01506 t + -

0.0492157 t^2 ,

(F) Simple moving average of 2 terms,

(G) Simple exponential smoothing with alpha = 0.9999,

(H) Brown's linear exp. smoothing with alpha = 0.8674,

(I) Holt's linear exp. smoothing with alpha = 0.312 and

beta = 0.0001,

(J) Brown's quadratic exp. smoothing with alpha =

0.6473,

(K) Winters' exp. smoothing with alpha = 0.309, beta =

0.0001, gamma = 0.2179,

(L) ARIMA(1,1,2)x(2,0,2)2,

(M) ARIMA(2,1,1)x(2,0,2)2,

(N) ARIMA(2,1,2)x(2,1,2)2,

(O) ARIMA(0,0,1)x(2,1,2)2,

(P) ARIMA(2,0,1)x(2,1,1)2

The sixteen projection models were statistically

evaluated against the local observed dataset of 1983-

2017, and simulated climate change projection using

was done using:

(1) the root mean squared error (RMSE),

(2) the mean absolute error (MAE),

(3) the mean absolute percentage error (MAPE),

(4) the mean error (ME),

(5) the mean percentage error (MPE)

The five analytical procedure enhanced the evaluation

of the selected model performance in fitting the

historical data.

F = 
Pmax
2

P
[1]

where: F = Fournier Index; 𝑃𝑚𝑎𝑥
2 = Monthly average

amount of Precipitation of the most rainy months

(mm), P = Average annual quantity of precipitation.

Standardization of simulated, modelled and 

analytical output

All parameters determined in the study were compared

with standardized ratings for tropical atmosphere and

environment as presented in Table 1 and Table 2.

Erosivity class F

Very low 0 – 20

Low 20 – 40

Moderate 40 – 60

Severe 60 – 80

Very severe 80 - 100

Extremely severe > 100

Coefficient of Variability Class

Low < 15

Moderate 16 - 35

High > 35

Table 1a. 

The erosivity 

classes by Fournier 

index (F)

(Fournier, 1960)

Table 1b 

Coefficient of 

Variability (%)

(Wildings, 1985)

Projected future climate change, modelling and

statistical downscaling

Projected future climatic scenario. Climate

scenario were projected based on a statistical

downscaling technique. The procedure was done

following the protocol as described by University of

Loughborough (2021). The technique downscaled

and modelled daily weather parameters using general

EQA 58 (2023): 41-56
M.S. Adiaha, O.J. Abimbola

DOI: 10.6092/issn.2281-4485/16898



44

Force
Wind speed Descriptive

term
Effects observed at sea Effects observed on land

Km/h Knots

0 Less than 1 Less than 1 Calm Sea surface like a mirror, but not necessarily flat. Smoke rises vertically.

1 1 - 5 1 - 3 Light air 
Ripples with the appearance of scales are formed, 

but without foam crests.

Direction of wind shown by smoke 

drift, but not wind vanes.

2 6 - 11 4 - 6 
Light 

breeze 

Small wavelets, still short but more pronounced. 

Crests do not break. When visibility good, 

horizon line always very clear.

Wind felt on face. Leaves rustle. 

Ordinary vane moved by wind.

3 12 -19 7 - 10 
Gentle

breeze

Large wavelets. Crests begin to break. Foam of 

glassy appearance. Perhaps scattered whitecaps.

Leaves and small twigs in constant 

motion. Wind extends light flag.

4 20 -28 11 - 16 
Moderate

breeze

Small waves, becoming longer.

Fairly frequent whitecaps.

Raises dust and loose paper. Small 

branches are moved.

5 29 -38 17 - 21 
Fresh

breeze

Moderate waves, taking a more pronounced long 

form. Many whitecaps are formed. Chance of 

some spray.

Small trees with leaves begin to 

sway. Crested wavelets form on

inland waters.

6 39 -49 22 - 27 
Strong

breeze

Large waves begin to form. The white foam 

crests are more extensive everywhere. Probably 

some spray.

Large branches in motion. Whis-

tling heard in telephone wires. 

Umbrellas used with difficulty.

7 50 -61 28 - 33 Near gale 

Sea heaps up and white foam from breaking 

waves begins to be blown in streaks along the 

direction of the wind.

Whole trees in motion.

Inconvenience felt in

walking against wind.

8 62 -74 34 - 40 Gale 

Moderately high waves of greater length. Edges 

of crests begin to break into the spindrift. The 

foam is blown in well-marked streaks along the 

direction of the wind.

Breaks twigs off trees.

Generally impedes progress. 

Walking into wind almost 

impossible.

9 75 -88 41 - 47 Strong gale 

High waves. Dense streaks of foam along the 

direction of the wind. Crests of waves begin to 

topple, tumble and roll over. Spray may affect 

visibility.

Slight structural damage occurs, e.g. 

roofing shingles may become loose 

or blow off.

10 89 -102 48 - 55 Storm 

Very high waves with long overhanging crests. 

Dense white streaks of foam. Surface of the sea 

takes a white appearance. The tumbling of the 

sea becomes heavy and shock-like. Visibility 

affected.

Trees uprooted.

Considerable structural

damage occurs.

11 103 -117 56 - 63 
Violent

storm

Exceptionally high waves. Sea completely 

covered with long white patches of foam. 

Visibility affected.

Widespread damage.

12 118 -133 64 - 71 Hurricane 
Air filled with foam and spray. Sea entirely white 

with foam. Visibility seriously impaired.

Rare. Severe widespread damage to 

vegetation and significant structural 

damage possible.

Table 2. Wind scale table. Source: Government of Canada, 2017

Wind modelling (Wind Flow Modelling)

Wind flow modelling was done through modelling the

real-time data of the measurement of the speed and

direction of the wind. The modelled computational

output was recorded as wind velocity. The procedure

for modelling was done following the outline of Mughal

et. al. (2017), where the decadal flux of the wind

velocity impact was modelled.

Statistical application and analysis

Modelling and simulation was undertaken using geo-

statistical and physical science modelling and simulation

packages including Statgraphics Centurion. Simulated

and modelled data were subjected to statistical analysis

using descriptive statistics including P-statistics. Various

simulation and modelled analytical procedures with

statistical approaches were applied to test, analyzed and

validate all modelled and simulated data. All statistical

approach was done following strategies as described by

IPCC (1995) and IPCC (2016).

Results and discussion

Evaluation of climate change projections

Projected future climatic behavior. The result of the

projection from downscaling as presented in Table 3

shows the forecasted values for 1983-2017, it also

display the predicted values from the fitted model and

the residuals (data-forecast).
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Period 1983-2017

Climate Change Projection

Fournier Index

F = 
Pmax
2

P
Data Forecast Residual

Wind velocity (m/s)

Wind speed 

(m/s)

Wind direction 

(°)

Jan 0.72 0.10433 0.33433 3.5 4.8

0.08333

Feb 1.14 6.59235 -5.45235 18.5 17.5

Mar 10.12 17.7222 -7.60224 20.1 22.1

Apr 21.50 28.1104 -6.61042 17.2 16.7

Decade 1 May 47.94 42.0453 5.89472 15.4 18.7

1983-1992 Jun 64.28 67.4008 -3.12081 14.7 15.7

Jul 78.34 71.0983 7.24175 13.4 14.6

Aug 98.73 76.4950 22.235 15.6 16.7

Sep 89.53 91.4527 -1.92265 13.6 14.5

Oct 39.55 62.4756 -22.9256 20.2 21.3

Nov 3.65 -3.10641 6.75641 14.8 19.1

Dec 1.36 -15.7202 17.0802 22.1 18.7

Jan 0.00 3.30514 -3.30514 17.4 18.5

0.083325

Feb 0.01 0.25963 -0.24963 16.7 21.3

Mar 6.61 14.5594 -7.94941 16.9 22.0

Apr 26.18 23.1984 2.98159 21.0 19.8

Decade 2 May 47.43 53.4399 -6.00993 17.8 21.0

1993-2002 Jun 62.53 65.6948 -3.1648 22.6 23.5

Jul 89.52 74.8806 14.6394 21.7 18.6

Aug 111.3 98.9816 12.3184 20.9 18.9

Sep 86.15 104.928 -18.7779 22.1 20.0

Oct 57.14 55.9998 1.14023 20.2 18.9

Nov 1.77 26.2212 -24.4512 18.7 14.6

Dec 0.17 -25.2177 25.3877 16.7 29.1

Jan 0.64 -2.08542 2.72542 18.6 18.7

0.083335

Feb 4.55 10.1742 -5.62424 22.2 19.8

Mar 4.63 9.6935 -5.0635 22.8 21.3

Apr 20.88 22.1928 -1.31284 18.7 16.7

Decade 3 May 46.99 39.8579 7.13214 19.9 15.5

2003-2012 Jun 76.99 73.5593 3.43072 21.2 19.8

Jul 90.24 83.3386 6.9014 13.6 14.5

Aug 96.60 100.658 -4.05774 20.2 21.3

Sep 73.96 71.4048 2.55516 14.8 19.1

Oct 56.58 64.2022 -7.62221 22.1 18.7

Nov 6.25 21.1639 -14.9139 17.4 18.5

Dec 0.00 -11.2611 11.2611 16.7 21.3

Jan 0.19 -5.04845 5.23845 16.9 22.0

0.08336

Feb 2.22 9.66918 -7.44918 21.0 19.8

Mar 9.14 13.9749 -4.83494 17.8 21.0

5 years trend Apr 15.35 21.6593 -6.30927 21.5 19.8

2013-2017 May 27.10 38.3091 -11.2091 11.8 18.8

Jun 23.94 39.4309 -15.4909 10.9 11.5

Jul 23.88 31.0141 -7.1341 17.4 18.5

Aug 37.50 34.1446 3.35537 16.7 21.3

Sep 24.83 34.7054 -9.87542 16.9 22.0

Oct 23.72 23.7518 -0.03179 21.0 19.8

Nov 0.30 3.75268 -3.45268 17.8 21.0

Dec 1.73 -7.16102 8.89102 19.1 15.8

Table 3.. Climate change projection, wind velocity and erosivity impact based Fournier Index. The Forecast Table is based on

ARIMA(1,1,2)x(2,0,2)2 Model:for the dataset of 1983-2017. Fournier Index as presented in the table is done for a decadal sequence.
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For time periods beyond the end of the series, it shows

95.0% prediction limits for the forecasts. These limits

show where the true data value at a selected future time

is likely to be with 95.0% confidence, with a statistical

accuracy of the fitted model being appropriate for the

data. The increase in the numerical output of the

projected data indicate increased in the rainfall of the

area over a 12 years projected timeframe , although with

fluctuations which could be high to low, thus,

indication a departure which could be explained as

change in the climatic element of rainfall sequence in

the area, thus proving a drift (or change ) in the climatic

behavior of the area. The assertion presented from the

output of the 35 years climatic trend for the Federal

Capital Territory of Nigeria is inline with the review

report of Giannini et. al. (2008) where their report

indicated fluctuation in climatic elements including

rainfall. Result output presented by Cook and Vizy

(2006) also align with the output of this findings, where

the Scholars presented modelled simulation output that

indicated a departure from the meteorological dataset

used which indicated a change in the behaiour and

nature of the climatic condition of West Africa.

Findings of this research is also inline with the work of

Eltahir and Gong (1996) where their research indicated

dynamical change in meteorological data after modelling

and projection as an indication of climatic fluctuation

and change in West Africa.

Statistical significance of the terms in the
forecasting model. Outcome of the forecasting

produced future values of 1983-2017 as presented in

Table 4 showed that the data cover 35 years periods

(modelled-coded as 48 time periods). Currently, an

autoregressive integrated moving average (ARIMA)

model has been selected. The ARIMA model assumes

that the best forecast for future data is given by a

parametric model relating the most recent data value to

previous data values and previous fluctuation (regarded

as noise by the model). Each value of 1983-2017 has

been adjusted in the following way before the model

was fit: (1) A multiplicative seasonal adjustment. The output

presented in Table 4 and Table 5 summa-rizes the stati-

stical significance of the terms in the forecasting model.

Terms with P-values less than 0.05 are statistically si-

gnificantly different from zero at the 95.0% confidence

level. The P-value for the AR(1) term is less than 0.05,

so it is significantly different from 0. The P-value for

the MA(2) term is less than 0.05, so it is significantly

different from 0. The P-value for the SAR(2) term is

less than 0.05, so it is significantly different from 0.

The P-value for the SMA(2) term is less than 0.05, so it

is significantly different from 0. The estimated standard

deviation of the input white noise equals 11.4102.

Parameter Estimate Stnd. Error t P-value

AR(1) -0.929713 0.07515 -12.3714 0.000000

MA(1) -1.31945 0.131889 -10.0042 0.000000

MA(2) -0.642115 0.126368 -5.08132 0.000009

SAR(1) 1.00888 0.0658126 15.3297 0.000000

SAR(2) -0.938697 0.0580461 -16.1716 0.000000

SMA(1) 1.44607 0.0412646 35.0439 0.000000

SMA(2) -0.918169 0.0445322 -20.6181 0.000000

Key: Backforecasting: yes - Estimated white noise variance =

130.192 with 40 degrees of freedom - Estimated white noise

standard deviation = 11.4102 - Number of iterations: 19

Length of seasonality = 2

Table 4. ARIMA model evaluation (Summary)

The output presented in Table 5 also summarizes the

performance of the currently selected model in fitting

the historical data. It displays:

(1) the root mean squared error (RMSE)

(2) the mean absolute error (MAE)

(3) the mean absolute percentage error (MAPE)

(4) the mean error (ME)

(5) the mean percentage error (MPE)

Statistic Estimation Period

RMSE 11.2363

MAE 8.15085

MAPE

ME -1.0374

MPE

The output presented in Table 5 also summarizes the

performance of the currently selected model in fitting

the historical data. It displays:

(1) the root mean squared error (RMSE)

(2) the mean absolute error (MAE)

(3) the mean absolute percentage error (MAPE)

(4) the mean error (ME)

(5) the mean percentage error (MPE)

Each of the statistics is based on the one-ahead forecast

errors, which are the differences between the data value

at time t and the forecast of that value made at time t-1.

The first three statistics measure the magnitude of the

errors. A better model gave a smaller value. The last

two statistics measured bias. A better model gave a

value close to 0. Note: the MAPE and MPE (as indica-

Table 5

Statistical model 

flows. Forecast 

model selected: 

ARIMA

(1,1,2)x(2,0,2)2
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.Models
(A) Random walk

(B) Random walk with drift = 0.0171324

(C) Constant mean = 33.7395

(D) Linear trend =  43.4539 + -0.396507 t 

(E) Quadratic trend = 

23.3575+2.01506 t +-0.0492157 t^2 

(F) Simple moving average of 2 terms

(G) Simple exponential smoothing with alpha = 0.9999

(H) Brown's linear exp. smoothing with alpha = 0.8674

(I) Holt's linear exp. smoothing with alpha = 0.312 and 

beta = 0.0001

(J) Brown's quadratic exp. smoothing with alpha = 

0.6473

(K) Winters' exp. smoothing with alpha = 

0.309, beta = 0.0001, gamma = 0.2179

(L) ARIMA(1,1,2)x(2,0,2)2

(M) ARIMA(2,1,1)x(2,0,2)2

(N) ARIMA(2,1,2)x(2,1,2)2

(O) ARIMA(0,0,1)x(2,1,2)2

(P) ARIMA(2,0,1)x(2,1,1)2

.

ted in Table 5) were not calculated because the smallest

data value was less than or equal to 0. It could be

stressed that there exit a shift in the tend of normal

from projected and collected climatic behanviour,

hence validating the view of a change in the climate of

the area, this view confirms the research output of

IPCC (2013) which express departure from normal in

the global climatic behaviour.

Time Sequence of Climate Change vaiability interms of Rainfall Plot for (1983-2017 )
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Figure 2. Time sequence of climate change variability interms of 

rainfall over a 35 years time sequence

Figure 3. Pattern of climatic change variability interms of rainfall 

over a 35 years time sequence

Model comparison. Result output presented in Table

6 compares the results of fitting different models to the

data. The model with the lowest value of the Akaike

Information Criterion (AIC) is model L [ARIMA(1,1,2)

x(2,0,2)2], which has been used to generate the

forecasted climatic projections. Table 6 also summa-

rizes the results of five tests run on the residuals to

determine whether each model is adequate for the data.

An OK means that the model passes the test. One *

means that it fails at the 95% confidence level. Two *'s

means that it fails at the 99% confidence level. Three

*'s means that it fails at the 99.9% confidence level.

Note: that the currently selected model, model L, passes

5 tests. Since no tests are statistically significant at the

95% or higher confidence level, the current model is

probably adequate for the data. Analytical output

presented in Figure 4 indicated about 99.9% increase in

the projected shift expected in the climatic variability

from normal in the area in the future 12 year interval.

Views on the finding confirms the research of Willmott

et. al. (1985) which indicated model fluctuation in

stabilizing statistical data in model furcating. The

outcome of this research is also in confirmation with

the work of Akponikpe et. al. (2010) which indicated

stability in using APSIM model in long term simulation

The variability of the shift in the climatic behaviou of

the area as indicated in Figure 2 and Figure 3 in

indicated sequential variability in the climatic behaviour

of the area over a 35 year trend. The research of

Opoku-Ankomah and Cordery (1994) which present

shift in the climatic behaviour of sea surface and rainfall

variability in a West African state is also inline with the

outcome of this findings.
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Model RMSE MAE ME AIC HQC SBIC

(A) 20.783 14.2482 -0.22327 6.10993 6.12467 6.14892

(B) 21.013 14.2438 -0.240434 6.17362 6.20308 6.25159

(C) 34.8159 29.5898 -0.116975 7.18348 7.21295 7.26145

(D) 34.7475 28.7402 -0.099923 7.22122 7.26541 7.33817

(E) 34.0351 27.9314 -0.099923 7.22145 7.28038 7.37738

(F) 27.7787 20.6104 -0.115306 6.73187 6.76133 6.80984

(G) 20.7839 13.9523 -0.218596 6.15169 6.18115 6.22966

(H) 22.051 16.2589 -0.387868 6.27005 6.29952 6.34802

(I) 33.5832 27.1534 -4.07284 7.15305 7.19725 7.27000

(J) 25.616 17.3189 -0.667758 6.56977 6.59923 6.64773

(K) 34.0453 27.1427 -0.734433 7.18038 7.22458 7.29733

(L) 11.2363 8.15085 -1.0374 5.12996 5.23309 5.40285

(M) 11.8903 8.44282 -1.07214 5.24311 5.34624 5.51600

(N) 11.8674 7.96368 -0.311221 5.28093 5.39879 5.59280

(O) 12.8534 9.93316 -1.28649 5.31556 5.38922 5.51047

(P) 12.9691 9.04041 -1.48312 5.37514 5.46353 5.60904

Length of seasonality = 2 - Years interval projected for =12

Table 6

Estimation period

Model RMSE RUNS RUNM AUTO MEAN VAR

(A) 20.783 OK ** *** OK *

(B) 21.013 OK ** *** OK *

(C) 34.8159 *** *** *** OK OK

(D) 34.7475 *** *** *** OK OK

(E) 34.0351 *** *** *** OK OK

(F) 27.7787 ** *** *** OK OK

(G) 20.7839 OK *** *** OK OK

(H) 22.051 OK OK * OK *

(I) 33.5832 *** *** *** OK OK

(J) 25.616 OK OK * OK OK

(K) 34.0453 *** *** *** OK OK

(L) 11.2363 OK OK OK OK OK

(M) 11.8903 OK OK OK OK OK

(N) 11.8674 OK OK OK OK OK

(O) 12.8534 * * OK OK OK

(P) 12.9691 OK OK OK OK OK

Key: RMSE = Root Mean Squared Error - RUNS = Test for excessive runs up and down - RUNM = Test for

excessive runs above and below median - AUTO = Ljung-Box test for excessive autocorrelation - MEAN = Test

for difference in mean 1st half to 2nd half - VAR = Test for difference in variance 1st half to 2nd half - OK = not

significant (p >= 0.05) - * = marginally significant (0.01 < p <= 0.05) - ** = significant (0.001 < p <= 0.01) - ***

= highly significant (p <= 0.001)

Table 7

Statistical significant 

test

Residual Normal Probability Plot for Climate Change Variability interms of Rainfall for 53 years in Abuja
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Figure. 4 

ARIMA(1,1,2)x(2,0,2)2 performance indicating 

increasing trend in the residual normality of the 

projected climatic shift towards a 12 years future 

climate change.
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Estimated Autocorrelations for residuals. The

finding result as presented in Table 8 shows the estima-

ted autocorrelations between the residuals at various

lags. The lag k autocorrelation coefficient measures the

correlation between the residuals at time t and time t-k.
Also shown are 95.0% probability limits around 0. If

the probability limits at a particular lag do not contain

the estimated coefficient, there is a statistically signifi-

cant correlation at that lag at the 95.0% confidence le-

vel. In this case, there was no autocorrelations

coefficients that was statistically significant, implying

that the time series may well be completely random

(white noise). Expression presented in this findings is

inline with the research out of Willmott et. al. (1985)

which presented variability in the statistics for the

evaluation of models. Research output of Akponikpe at.

al. (2010) also align with this finding where the Scholar

indicated variation in the modelling with APSIM model.

Lag Autocorrelation Stnd. Error
Lower 95.0% Prob. 

Limit

Upper 95.0% Prob. 

Limit

1 -0.0789195 0.145865 -0.285891 0.285891

2 -0.20065 0.146771 -0.287666 0.287666

3 -0.124449 0.152495 -0.298886 0.298886

4 0.0872082 0.154641 -0.303092 0.303092

5 0.0671263 0.155684 -0.305136 0.305136

6 -0.0174314 0.156299 -0.306340 0.306340

7 0.0839226 0.15634 -0.306421 0.306421

8 0.0817443 0.157296 -0.308294 0.308294

9 -0.200644 0.158197 -0.310061 0.310061

10 -0.201543 0.163522 -0.320497 0.320497

11 0.0635477 0.168724 -0.330694 0.330694

12 0.258509 0.169233 -0.331690 0.331690

13 0.0500284 0.177436 -0.347768 0.347768

14 -0.172082 0.177735 -0.348356 0.348356

Table 8

Estimated autocorrelations for

residuals.

Model: ARIMA(1,1,2)x(2,0)

Estimated partial autocorrelations for residuals.
Analytical output presented in Table 9 shows the esti-

mated partial autocorrelations between the residuals at

various lags. The lag k partial autocorrelation coeffi-

cient measures the correlation between the residuals at

time t and time t+k having accounted for the correla-

tions at all lower lags. It can be used to judge the order

of autoregressive model needed to fit the data. Also

shown are 95.0% probability limits around 0. If the

probability limits at a particular lag do not contain the

estimated coefficient, there is a statistically significant

correlation at that lag at the 95.0% confidence level. In

this case, none of the 24 partial autocorrelations

coefficients is statistically significant at the 95.0%

confidence level. Outcome of this finding also confirms

the research of Akponikpe at. al. (2010) which

expressed variation in statistical output of the research

statistical outcome in the in using APSIM model.

Lag Partial Autocorrelation Stnd. Error
Lower 95.0% Prob. 

Limit

Upper 95.0% Prob. 

Limit

1 -0.0789195 0.145865 -0.285891 0.285891

2 -0.208175 0.145865 -0.285891 0.285891

3 -0.168307 0.145865 -0.285891 0.285891

4 0.0137574 0.145865 -0.285891 0.285891

5 0.0199757 0.145865 -0.285891 0.285891

6 -0.00557118 0.145865 -0.285891 0.285891

7 0.125456 0.145865 -0.285891 0.285891

8 0.125882 0.145865 -0.285891 0.285891

9 -0.154528 0.145865 -0.285891 0.285891

10 -0.20555 0.145865 -0.285891 0.285891

11 -0.0554854 0.145865 -0.285891 0.285891

12 0.133777 0.145865 -0.285891 0.285891

13 0.0874988 0.145865 -0.285891 0.285891

14 -0.0432294 0.145865 -0.285891 0.285891

15 -0.174132 0.145865 -0.285891 0.285891

Table 9

Estimated partial autocorrelations 

for residuals

Model: ARIMA(1,1,2)x(2,0,2)2
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Periodogram for residuals. Data presented in Table

10 shows the periodogram ordinates for the residuals.

It is often used to identify cycles of fixed frequency in

the data. The periodogram was constructed by fitting a

series of sine functions at each of 24 frequencies. The

ordinates are equal to the squared amplitudes of the

sine functions. The periodogram can be thought of as

an analysis of variance by frequency, since the sum of

the ordinates equals the total corrected sum of squares

in an ANOVA table.Ouput of this finding analysis is

inline with the scientific report of Adiku and Stone

(1995) which expressed fluctuation in statistical

sequence while modelling and predicting southern

oscillation index for improving rainfall predictions.

Further, the scientific output by Akponikpe at. al.

(2010) which expressed fluctuation in data modelling

and prediction also validate views of this research.

i Frequency Period Ordinate Cumulative Sum
Integrated 

Periodogram

0 0.0 2.26923E-29 2.26923E-29 4.53884E-33

1 0.0212766 47.0000 158.291 158.291 0.0316608

2 0.0425532 23.5000 181.865 340.157 0.0680369

3 0.0638298 15.6667 10.2936 350.45 0.0700957

4 0.0851064 11.7500 4.34344 354.793 0.0709645

5 0.106383 9.40000 148.607 503.401 0.100688

6 0.12766 7.83333 91.2909 594.692 0.118948

7 0.148936 6.71429 172.949 767.641 0.153541

8 0.170213 5.87500 844.416 1612.06 0.322438

9 0.191489 5.22222 85.7766 1697.83 0.339594

10 0.212766 4.70000 41.0087 1738.84 0.347797

11 0.234043 4.27273 304.466 2043.31 0.408695

12 0.255319 3.91667 706.134 2749.44 0.549933

13 0.276596 3.61538 397.562 3147.0 0.629452

14 0.297872 3.35714 33.7311 3180.73 0.636199

15 0.319149 3.13333 217.397 3398.13 0.679682

16 0.340426 2.93750 66.6175 3464.75 0.693006

17 0.361702 2.76471 309.445 3774.19 0.754900

18 0.382979 2.61111 84.3316 3858.52 0.771768

19 0.404255 2.47368 295.057 4153.58 0.830784

20 0.425532 2.35000 221.949 4375.53 0.875178

21 0.446809 2.23810 81.9683 4457.5 0.891573

22 0.468085 2.13636 329.563 4787.06 0.957491

23 0.489362 2.04348 212.528 4999.59 1.000000

Table 10 

Periodogram for residuals

i=frequency count,

Model: 

ARIMA(1,1,2)x(2,0,2)2

Tests for randomness of residuals

Hypothesis
1. The residuals are random at the 95.0% or higher con-

fidence level

2. The series is random at the 95.0% or higher confi-

dence level

3. The series is random at the 95.0% or higher confi-

dence level.

Result. Since the P-value for this test is greater than or

equal to 0.05, we cannot reject the hypothesis that the

residuals are random at the 95.0% or higher confidence

level.

1. The second test counts the number of times the se-

quence rose or fell. The number of such runs equals 32,

as compared to an expected value of 31.0 if the sequen-

ce were random. Since the P-value for this test is grea-

ter than or equal to 0.05, we cannot reject the hypothe-

sis that the series is random at the 95.0% or higher con-

fidence level.

2. The third test is based on the sum of squares of the

first 24 autocorrelation coefficients. Since the P-value

for this test is less than 0.05, we can reject the hypothe-

sis that the series is random at the 95.0% confidence

level.

Determination. Since the three tests are sensitive to

different types of departures from random behavior,

hence, the tests for randomness of residuals of

hypothesis 1 and 2 are completely random indicating

that [ARIMA(1,1,2)x(2,0,2)2] model capture all of the

structure in the data.
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Key. -A sequence of random numbers is often called

white noise, since it contains equal contributions at

many frequencies. The first test counts the number of

times the sequence was above or below the median.

(1) Runs above and below median

Median = -3.12081

Number of runs above and below median = 26

Expected number of runs = 24.0

Large sample test statistic z = 0.447324

P-value = 0.654638

(2) Runs up and down

Number of runs up and down = 32

Expected number of runs = 31.0

Large sample test statistic z = 0.17641

P-value = 0.859967

(3) Ljung-Box Test

Test based on first 15 autocorrelations

Large sample test statistic = 19.1513

P-value = 0.0140709

The output of the three tests ran to determine whether

or not the residuals form a random sequence of

numbers are completely random and if the model

[ARIMA(1,1,2)x(2,0,2)2] used capture all of the

structure in the data indicated a significant potential at

P-values, hence, the are completely random and

captured all of the structure in the dataset. Output of

this finding is inline with the research of Akponikpe at.

al. (2010) which expressed stability including fluctuation

in dataset prediction and modelling. The outcome of

this finding as indicated in Figure 5 also indicated

residual impact in the periodic change in the climatic

behavior of the Federal Capital Territory of Nigeria

over a 35 years flux of climatic behavior and variability

of the area. This output also align with the work of

Akponikpe at. al. (2010). Further, the finding of this

work also align with the views of IPCC (1995) which

stressed modelling output testing with variation to

validate climatic projections.

Figure  5

Residual impact in the 

periodic change in the 

climatic behavior of the 

Federal Capital Territory 

of Nigeria over a 35 years 

flux of climatic behavior 

and variability.

Wind velocity potential and impact on the area over

a 35 year period

Result outcome of the trend of wind velocity in the

Federal Capital Territory of Nigeria as indicated in

Figure 6, 7, 8 and in Figure 9 has indicated that the

direction of flux ranges from North East (NE) from the

decadal sequence of 1983-1992 with an average

direction of 16.70° NE with an average of 25.20 from

1993-2002, North (N) at an average of 16.70° from

2003-2012 and North direction for 2013-2017 with an

average flux directional flux at 11.50°. The analytical

output presented in Table 3 indicated that for the

decade of 1983-1992 22.1 m/s was recorded in the

wind speed sequence at the month of December while

the least speed of wind was recorded in January with a

figure of 3.5 m/s. The directional flux indicated a figure
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of 22.1° which presents the month of March of the

decade 1983-1992 with the highest wind directional

impact. The month of June with 22.6m/s of the impact

in the wind speed flux, while the least wind speed was

observed at 16.7m/s for the month of February and

December respectively for the decadal impact of the

range 1993-2002. The wind direction was observed at a

potential highest flux of 29.1° for the month of

December and the least flux of wind directional

potential at 14.6° for the month of November at

decadal flux wind directional impact for a decade 2003-

2012. Wind speed highest impact of the decade 1993-

2002 at 22.8m/ was recorded in February, while the

least impact was recorded in the month of July at a

value of 13.6m/s. Wind directional impact flux at a

potential with value of 21.3° was recorded as the

highest in the month of December and March respe-

ctively at a decadal range of 2003-2012, however, the

least decadal impact was recorded at 14.5° in the month

of July for the wind directional impact in the area..

A five (5) years impact on the wind speed potential in

the area revealed 21.5m/s in the month of April which

was the highest wind speed recorded, while 10.9m/s

was the least value obtained for wind speed in the area.

The highest directional flux of the area for 5 years

period of 2013-2017 was obtained at 22.0° for the

month of September and January respectively, while the

least wind directional value was obtained at 15.8° in the

month of December of the year range at 2013-2017.

Outcome of the recorded behavior of wind speed and

wind direction in the area is inline with the output of

the projected findings of Quill et. al. (2019) who

recorded climatic shift with wind impact while

modeling wind direction distributions. This research

findings confirms the work of Andrews (2012) where

the Scholar reported wind variability in speed and

directional flux. The outcome of this research also

aligns with the work of Belcher et. al. (2012) who

recorded variability in the frequency impact.

Figure 6. Wind Velocity 

Flux of 1983-1992

Figure 8. Wind Velocity 

Flux of 2003-2012
Figure 9. Wind Velocity 

Flux of 2013-2017

Figure 7. Wind Velocity 

Flux of 1993-2002
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Assessing the implication of the behavior of the

wind speed to sea and land sustainability

Result of the output for wind velocity in the area over a

35 years period as presented in Table 11 indicated that

79.56km/h of wind flux hit the area in the decadal

month of December at 1983-1992, this wind velocity

flux could be said to have had a strong gale impact with

tendency of causing a high wave that could have top-

pled the sea balance while causing crests of wave in sea

with human-animal visibility impediment. The 79.56

km/h flux could have also accounted for land surface-

space variability due to lifting and deposition of mate-

rials and gases, this view is inline with the expression

in wind velocity potential ranking prescribed as pre-

sented by the Government of Canada as presented in

Table 2b. However, the month of January in the decade

of 1983-1992 witnessed 12.6 km/h of wind velocity

which indicated that the month in the ten years interval

contributed heavily to the gentle breeze profile of the

area while producing large wavelets in the sea and small

twigs in the land surface of the area.

The trend of wind velocity observed for the decade of

1993-2002 indicated that the decadal month of June

produced 81.36 km/h volume of wind velocity which

also contributed to variability in sea-climate abnorma-

lity through toppling and tumbling with slight structural

and in environmental imbalance , however, the decadal

months of April, June, July, August, September and

Octeber produced wind velocity flux at 75.6 km/h,

78.12 km/h, 75.24 km/h, 79.56 km/h and 72.72 km/h

respectively indicating a view that these decadal

months had high significance in the climatic shift in the

area. The decadal month of March in year range of

2003-2012 produced 82.08 km/h of wind velocity

impact indicating a view that the decadal month had

impacted on the climate of the Federal Capital

Territory. f Nigeria through high wave flux, sea

tumbling and topping including causing land

degradation through slight structural damage in land

surfaces and in human-animal settlement However, it

could be stated that the decadal month of February

(79.92 km/h), May (71.64 km/h), June(79.32 km/h),

August (72.72 km/h and October (79.56 km/h) also

falls in the range of being destructive, thereby had

impacted heavily in the climatic shift of the area. The

five (5) years trend in the wind velocity impact in the

area indicated that the decadal month of April had a

high impact in the wind velocity of the area, where

77.4 km/h of wind velocity had contributed to the

climatic shift of the area in terms of sea-atmosphere de-

Wind Speed (Wind Velocity)

Decadal Period of 

1983-2017
m/s km/h

D
ec

ad
e 

1
 (

1
9
8
3
-1

9
9
2
)

Jan 3.5 12.6

Feb 18.5 66.6

Mar 20.1 72.36

Apr 17.2 61.92

May 15.4 55.44

Jun 14.7 52.92

Jul 13.4 48.24

Aug 15.6 56.16

Sep 13.6 48.96

Oct 20.2 72.72

Nov 14.8 53.28

Dec 22.1 79.56

D
ec

ad
e 

2
 (

1
9
9
3
-2

0
0
2
)

Jan 17.4 62.64

Feb 16.7 60.12

Mar 16.9 60.84

Apr 21 75.6

May 17.8 64.08

Jun 22.6 81.36

Jul 21.7 78.12

Aug 20.9 75.24

Sep 22.1 79.56

Oct 20.2 72.72

Nov 18.7 67.32

Dec 16.7 60.12

D
e
c
a
d

e
 3

 (
2
0
0
3
-2

0
12

)

Jan 18.6 66.96

Feb 22.2 79.92

Mar 22.8 82.08

Apr 18.7 67.32

May 19.9 71.64

Jun 21.2 76.32

Jul 13.6 48.96

Aug 20.2 72.72

Sep 14.8 53.28

Oct 22.1 79.56

Nov 17.4 62.64

Dec 16.7 60.12

5
 y

e
a
rs

 t
re

n
d

 (
2
0
13

-2
0
17

)

Jan 16.9 60.84

Feb 21 75.6

Mar 17.8 64.08

Apr 21.5 77.4

May 11.8 42.48

Jun 10.9 39.24

Jul 17.4 62.64

Aug 16.7 60.12

Sep 16.9 60.84

Oct 21 75.6

Nov 17.8 64.08

Dec 19.1 68.76

Total 858.80 3091.68

Mean 17.89 64.41

STD 3.60 12.98

SE 0.52 1.87

CV (%) 20.15 20.15

Table 11. Decadal wind velocity flux
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stabilization impact and land degradation potential.

However, the decadal month of October (75.6 km/h),

February (75.6 km/h) also falls into the decadal months

that impacted greatly on the climatic departure from

normality in the area. A coefficient of Variation (CV%)

at CV=20.15% obtained for a 35 years period in the

area indicated a moderate contribution towards the

departure from normal in the climatic behaviour of the

area. The output of this findings confirms the research

report of IPCC (1995) which express change in the

fluctuation and variability in meteorological and climatic

elements as contributor to the global changing climate.

Outcome of this findings is also inline with the views

presented by Andrews (2012); Abimbola and Falaiye

(2016); Abimbola et. al. (2017) where they expressed

wind fluctuation and variability being a factor in

modulating space-land atmospheric potential. Research

outcome of Belcher et. al (2012) also align with the

outcome of this findings, where the Scientists reported

wind flux variability with terrain impact. The findings of

this research further confirm the work of Forthofer

(2007) which expressed variability in wind behavior.

Estimating the rainfall impact with Fournier Index

The result outcome of the Rainfall Erosivity Impact

presented in Table 12 indicated that the rainfall impact

for soil and environmental degradation in the area is

very low. The Coefficient of Variability (%) of the

erosion potential of the area fall at 0.016 for a 35 years

period, which indicated the area as being low at a CV

class of < 15 which indicated that the rainfall in the area

is capable of having low impact on the erosivity status

of the area, hence contributing less to possible environ-

mental degradation potential of the area. Outcome

presented in this findings confirms the work of Mohtar

et. al. (2015) which presents views that fluctuations in

climatic variable like rainfall not necessarily being an

hazard to environmental sustainability. Views presented

in this study further confirms the view raised by

Fournier (1960) which points to many factors leading to

the erosivity potential or impact in the soil system.

Decadal Range
Fournier 

Index

1983-1992 0.083330

1993-2002 0.083325

2003-2012 0.083335

5 years trend (2013-2017) 0.083360

Mean 0.083

CV (%) 0.016

Table 12

Estimated 

rainfall erosivity 

impact with 

Fournier Index

Conclusions

Projected data presents a P-value range at [P-value =

0.654638, P-value = 0.859967 and P-value = 0.859967]

of the P-statistics at a 95% significant level, hence,

validating a past and future change in the climatic

behaviour of the area. This then indicate a view that

there exist a shift in the climatic behaviour of the

Federal Capital Territory of Nigeria over a 35 years

period. The forecast of the area into a 12 years outlook

has revealed that the climate of the area will continue to

change with variability in climatic and meteorological

elements of rainfall fluctuation, wind fluctuations and

climate-environmental impact nexus posed by these

elements. The wind velocity of the Federal Capital

Territory of Nigeria has over a 35 years period fluctuate

at a range of 81.36km/h-12.6km/h which indicated a

high sea-land-atmospheric nexus impact toward the

variability that exist in the climatic condition of the area.

Wind directional flux of the area ranges from 22-4.8

which also contributed to the change in the climatic

change in the area.The erosivity flux of the area over a

53 years period has indicated that the rainfall in the area

contributes to minimal land disturbance at a Coefficient

of Variation of CV=0.16%.
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