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Abstract
This work investigates the application of artificial neural networks (ANN) and response surface methodology
(RSM) in developing a technique for removing Pb2+ and Ni2+ ions from wastewater using chitosan derivative. The
materials including chitosan beads (CS) and grafted chitosan beads (MCS) were evaluated using infrared
spectroscopy (FTIR) and a scanning electron microscope (SEM). The process factors were modeled and
optimized using the central composite design (CCD) derived from RSM. Removal efficiency was described as the
response for the output layer. However, the input layer feed data consists of pH, adsorbent dose, contact
duration, temperature, and concentration. Two neurons were used as the ANN algorithm's output layers, which
correspond to the adsorption of Pb2+ and Ni2+ ions. Both models were measured using statistical metrics like
average relative errors (ARE), coefficient of determination (R2), Marquart's percentage standard deviation
(MPSD), mean squared error (MSE), Pearson's Chi-square (𝜒2), root means square errors (RMSE), and the sum of 
squares of errors (SSE). The ideal trained neural network depicts the training, validation, and testing phases, with
R2 values of 1.0, 0.968, and 0.961, respectively. The findings, however, showed that the ANN technique is
superior to the RSM-CCD model approach. At pH 5, starting concentration of 100 mg/L, an adsorbent mass of
6.0 g, a reaction time of 55 min, and a temperature of 40 oC, the RSM-CCD model's optimization results for the
process variables were achieved. The greatest removal percentages for Pb2+ and Ni2+ ion was 98.14% and 98.12%,
respectively. The findings suggest that ANN can be utilized in forecasting the removal of adsorbates from
wastewater.
Keywords
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Introduction

Because of their toxicity, heavy metal ions like Pb2+ and
Ni2+ are known to be familiar and dangerous pollutants
in the aquatic system. One of the biggest problems in
the environment today is the widespread release of
these pollutants from textile effluents and wastewater
from other industrial processes, including pulp and
paper production, leather tanning, and battery
manufacturing (Banza & Rutto, 2022; Xaba et al., 2020).

In order to analyze adsorption in an aqueous mixture,
numerous methods can be applied to remove this
contamination from water (Igberase et al., 2017; Jakšić
et al., 2021). However, for the proper design and
operation of a water cleaning system, it is helpful to
identify additional toxins in wastewater. Furthermore,
in a multi-component system with several
contaminants, they may or may not have a vital
influence on the strength of the adsorbent's binding. In
light of these facts, the adsorbent's binding ability
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depends on the quantity and concentration of
pollutants present in the mixture (Mokhtar et al., 2020).
Subsequently, significant accomplishment has been
made utilizing chitosan as a superior adsorbent to
remove pollutants from water and wastewater
(Igberase et al., 2017). Chitosan has unique properties
that make it useful in various industries, including wa-
stewater treatment, pharmaceuticals, medical applica-
tions, environmental protection, textiles, biotechno-
logy, cosmetics, food processing, and agriculture. The-
se properties include antimicrobial activity, biocompa-
tibility, non-toxicity, and biodegradability (Mazouz et
al., 2023; Mokhtar et al., 2020; Sheth et al., 2021) 2010).
Chitosan is commonly made as flakes, but the formu-
lation is not efficient in adsorption studies and results
in low adsorption capacity, hence chitosan flakes are
converted into beads to address the issue of poor
adsorption performance. Chitosan possesses two reac-
tive groups, which are the amino and hydroxyl groups
group (Fan et al., 2013; Li et al., 2018; Liu et al., 2019;
Pompeu et al., 2022), which facilitate easy graft copo-
lymerization. In recent years, chitosan adsorbents have
been broadly applied in the removal of dye and
adsorbates from water in the presence of hydrogen
bonding and electrostatic interactions as the most
common mechanisms. Given that it is one of the most
widely available, affordable polysaccharides that
produces a greater number of functional groups,
chitosan has been vastly exploited for the production
of new hydrogels for environmental utilization
(Babakhani and Sartaj, 2020; Jafarnejad et al., 2020).

The use of modeling and computer-aided simulation
approaches with experimental research is applied by
contemporary scientific researchers. Computer simula-
tions can offer an understanding of the functioning
correlation between the input and output parameters of
the examined system or mechanistic details, depending
on the modelling-tools used. The ANN used for
machine learning is a crucial tool for data-driven
modeling and process development of the system under
investigation. However, owing to their extensive
capability to model non-linear variation, RSM and ANN
are used to extrapolate from historical data in order to
anticipate how diverse processes would perform
(Elmolla et al., 2010; Jakšić et al., 2021; Kabuba and
Maliehe, 2021). Consequently, there haven't been any
reports in the literature about utilizing an ANN model
to simulate synthetic wastewater using chitosan
derivatives. In order to determine the ideal adsorption
process parameters. This study assesses the effects of

process factors including pH, reaction time, starting
concentration, adsorbent dose, and temperature. Based
on five adsorption characteristics, the ANN model was
created to forecast the adsorption of Pb2+ and Ni2+

ions. This made it possible to achieve ideal adsorption
conditions. Furthermore, analysis of variance
(ANOVA) was used to evaluate the statistical findings
(Igberase et al., 2017; Xaba et al., 2020). The key
objective of this investigation is to design a neural
network model that uses experimental design matrix
data from RSM-CCD to forecast the presence of
adsorbates in synthetic wastewater. Additionally, SEM
and FTIR were used to describe respectively the
morphology and basic functional group of the
developed adsorbent.

Theory of data description

To better understand how a reaction process operates
and forecast relevant outcomes, simulation and
modelling are process techniques that quantitatively
analyse the physical surroundings of a reaction process.
The foundation of deep learning is ANN, which allow a
variety of computer algorithms to learn, understand,
and produce educated feedback established on the root
of the findings (Makomere et al., 2022; Witek-Krowiak
et al., 2014). The purpose of this study is to evaluate
how well ANN perform when analysing input data.
However, pH, temperature, contact time, adsorbent
dose, and initial concentration are input experimental
factors that are taken into account in this study.
Equation 1-6 was taken into consideration to highlight
the importance of RSM and ANN models. Utilizing this
non-linear method, predicted and actual data were
compared.
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[5]

𝑆𝑆𝐸 = σ𝑖=1
𝑁 ( 𝑞𝑒(𝑒𝑥𝑝) − 𝑞𝑒(𝑝𝑟𝑒𝑑) )2 [6]

where N is the number of evaluations, P
denotes the range of model factors, and qe(exp)
and qe(pred) are the empirical and predicted
uptake rates, accordingly.

RSM
RSM is an optimization method that examines
experimental data using mathematical and sta-
tistical models. The optimization of the binding
variables entails 6 crucial actions, including: (1)
choosing the independent variables and
responses; (2) choosing the experimental design
strategy; (3) obtaining the results of the actual

𝛾 = 𝛽𝑜 + σ𝑖=1
𝐾 𝛽𝑖𝑋𝑖 + σ𝑖=1

𝐾 𝛽𝑖𝑖𝑋𝑖
2 +σ𝑖<𝑗 𝛽𝑖𝑗𝑋𝑖𝑋𝑗 + 𝑒(𝑋1. 𝑋2 … . 𝑋𝐾 [7]

experiment; (4) fitting the model equation to the
experimental data; (5) obtaining ANOVA; and
(6) obtaining the optimal conditions (Ayoola et
al., 2020; Bohlouli et al., 2016). In this study,
Design-Expert Version 6.0.6 was used, and
CCD was utilised to design the experiment. The
design arrangement found 45 experimental
runs, of which 37 of them had non-centre
points and 8 had centre points using an alpha of
2. These replicas are essential because they offer
independent experimental error estimation
(Mokhtar et al., 2023). The quality of fit was
supplied by the correlation coefficient (R2). If
the R2 value is near to one, the model is thought
to be extremely dependable. Equation [7]
displays a mathematical model that the software
created to represent the answer in relation to
quadratic polynomial equation.

where i is the linear effect, ii is the quadratic effect,
and ij is the interaction effect (Xaba et al., 2020) and
o is the interest variable. The positive sign in the
equation indicates the variables synergistic effects.
The following factors were taken into consideration
as independent variables in the present investigation:
pH, initial concentration, contact time, dosage, and
temperature. Were Pb2+ and Ni2+ ions adsorption
represented by (𝛾Pb) and (𝛾Ni) respectively are the
response variables. CCD is used to evaluate the
quadratic influences on the elimination of Pb2+ and
Ni2+ ions from aqueous solutions. The model
dependability is determined by the R2 value. Using a
probability less than F value, the quadratic model
ability to match the experimental data can be
evaluated. A probability greater than F with a value
smaller than 0.0001 denotes the importance of the
model term. Through ANOVA analysis and 3D
model graphs, the program examined each response.
Also, to examine the effects of components at
multiple points in the RSM produced design and to
highlight how working factors affect process
efficiency, perturbation plots is utilized after
validating the applicability of the empirical model.

ANN
The system based on ANN and its learning and re-

sponse mechanism served as the ANN technique
primary sources of inspiration. Due to its ease in
estimating the degree of non-linearity, the use of
ANN has been regarded as a helpful simulating
device for the analysis of adsorption methods
(Bohlouli et al., 2016; Cojocaru et al., 2021;
Makomere et al., 2022). When modelling ANN a
database is essential, the experiment is created by
compiling several data points from adsorption trials.
As a successful method for determining input varia-
bles, principal component analysis was used to make
sure the input parameters are significant. The pre-
processed experimental values are separated at
random into training, testing, and validation sets
based on the input and output vectors. Equation 4
represents the mean square error (MSE) and is
utilised to evaluate how effective the ANN
performed throughout training. Owing to the
intricacy of the technique a quadratic mathematical
model is chosen to describe non-linear performance.
ANN approach was carried out in this study using
Artificial Neural Network Toolbox V4.0, MATLAB,
2020a. In this regard, ANN might be the best
method for fixing statistical problems in adsorption
studies. ANN is a data processing system based on
the design of a biological neural network, the input
layer, hidden layer, and output layer are them three
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4

levels that make up ANN. Artificial intelligence (AI)
systems are built on a structure that mimics the
operation of a brain network. The situations
displaying linear correlations within the parameters
are translated using a neural network without any
hidden layers. A single-layer perceptron, which is the
most basic type of neural architecture, is used to
describe it. A multi-layer perceptron is a network
with a hidden layer that creates a connection
between the input layer and the output layer via a
complex computing procedure including weight
changes and activation functions. The quantity of
hidden layers, which may be in shallow or deep
neural networks, is determined by the complexity of
the metadata. Shallow neural networks use data that
does not show a straight path of correlation, such as
variables that comprise several target feedbacks and
have only one hidden layer (Demarchi et al., 2015;
Serhan et al., 2019). ANN is regarded as a nonlinear
regression technique for establishing a link between
dependent and independent variables. The ANN
model configuration processes involve the following
steps, (1) Collecting data. (2) Train and test set
selection. (3) Conversion of data into ANN inputs.
(4) Identifying, training, and testing network
structures. (5) If necessary, repeat the processes
several times to get the best model. Due of its
adaptability to noise, outliers, and overlapping data
sets, ANN is thought of as being able to adapt to
data with a nonlinear structure(Oladipo & Gazi,
2015). Neurons make up the layers (input layer,
hidden layer, and output layer). The input layer
collects independent variables, and the output layer
receives dependent variables. There is no processing
in the input layer, therefore it is regarded as inactive.
The synaptic weights of the hidden layer, which
include information pertinent to the ANN, transfer
information to the output layer along the way. In
order to start data transmission from the input or
hidden node and to shape the computed response or
output, an activation function is used, and only the
online node is subject to this process. Due to its
adaptability to nonlinear datasets, the hidden layer's
sigmoid activation function is predominantly used by
the system to compute the targeted outcome.
The time required to effectively train a network is a
performance parameter that is related to the
effective weight initiation. The incorrect starting
weight selection may lengthen training time or
potentially result in the training algorithm failing to

converge. The Garson equation as shown in
Equation [8] is used to determine the initial weight
for ANN training (Kabuba & Banza, 2020),

𝐼𝑗=
σ𝑚=1
𝑚=𝑁ℎ \𝑊𝑗𝑚

𝑖ℎ𝑥𝑊𝑚𝑛
ℎ𝑜\ /σ𝑘=1

𝑁𝑖 𝑥𝑊𝑘𝑚
𝑖ℎ 𝑊𝑚𝑛

ℎ𝑜𝑥

σ𝑘=1
𝑚=𝑁𝑖 \𝑊𝑚=1

𝑛ℎ 𝑥𝑊𝑚𝑛
ℎ𝑜\ /σ𝑘=1

𝑁𝑖 𝑥𝑊𝑘𝑚
𝑖ℎ 𝑊𝑚𝑛

ℎ𝑜 [8]

The connection weight is W. The subscripts 'k','m',
and 'n' denote input, hidden, and output neurons,
respectively, and the superscripts 'I', 'h', and 'o'
denote input, hidden, and output layers, respectively.

Experimental
Materials and equipment’s

Without additional purification, all materials were of
analytical quality. A 90% deacetylated form of
chitosan powder was imported from China. Sigma-
Aldrich provided aniline (99.5%). In order to graft
chitosan beads, a domestic microwave was utilized.
Sigma-Aldrich was used to obtain sodium hydroxide
(99%), acetic acid (99%), and hydrochloric acid
(99%). To alter the pH of the solution, a pH meter
(Hanna HI 8421) was utilized, and it was bought
from Sigma-Aldrich. In the school laboratory, distil-
led water was obtained using an Ultima 888 water
distiller. Using an agitator (Labcon incubator), the
adsorption experiment was conducted. The quantity
of adsorbate ions adsorbed was calculated using a
Varian spectrophotometer (Varian SpectrAA-10).

Adsorbate preparation

A calculated mass of PbSO4 and NiSO4.6H2O were
separately dissolved in purified water to create the
stock mixture utilized in this work. This stock
mixture was then diluted to provide the necessary
required concentration.

Transformation of chitosan from its powdered
state
Three stages were involved in the preparation of
grafted chitosan composite (MCS). The first step
was to dissolve 30 g of chitosan powder in 1 L of a
10.0% (v/v) acetic acid solution. In the Second step,
chitosan beads (CS) were created by passing chitosan
solution using a peristaltic pump, through a
glassware tube, and into a 1M sodium hydroxide so-
lu-tion. To get rid of any sodium hydroxide residue,
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the beads were repeatedly washed with purified
water. Thirdly, microwave irradiation was used to
graft the developed beads. In an open neck flask, 5 g
of chitosan beads were combined with 0.5 g/L of
aniline to achieve this. Then, for 20 minutes, this
flask was heated on medium-low power in a home
microwave. The beads were once again washed with
purified water before being applied for research use.

Characterization of the beads

Separately weighed samples of 1.0 g each of CS and
MCS beads were oven dried at 60 oC before being
blended to create a powder. A Shimadzu FTIR
model 8300 was used for the infrared measurement,
and spectra between 500 and 4000 cm-1 were
collected. To clearly see the interior fibers, the SEM
examination was carried out by bisecting CS and
MCS beads separately and coating them with gold.
The gold-coated beads were analyzed using a Jeol
733 super probe.

Adsorption studies
Batch studies were conducted to develop the
adsorption technique and was carried out in a 200
mL glass stoppered Erlenmeyer flasks holding test
solutions at the necessary level of Ni2+ and Pb2+

ions concentration of 50-150 mg/L, reaction time
of 10-100 min, pH of 1-8, adsorbent dosage of 1-8g
and temperatures of 25-55 oC. In each test, 100 mL
of a solution containing Ni2+ and Pb2+ ions at a
particular concentration were added to each flask.
Using diluted 0.1 M HCl/NaOH, the pH of the
solution was adjusted to maintain the required pH
throughout the experiment. The required amount of
adsorbent was added, and the solution was shaken at
120 rpm. Centrifugation was then used to separate
the solid and liquid phases for 10 min at 2500 rpm.
The removal percentage (%) was assessed using
Equation [9].

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 =
𝐶𝑜−𝐶𝑒

𝐶𝑜
𝑥100 [9]

where Co and Ce (mg/L) denotes the initial and final
concentration respectively.

Outcomes and discussion

Characterization of the beads
FTIR analysis. To examine the structure, basic fun-
ctional group and chemical bond of materials, FTIR
spectra was utilized. Figure 1 elucidates the FTIR
spectra of CS and MCS beads respectively. In this
illustration, it can be seen that CS has functional
groups that are typical of glycosidic material on its
surface. The features of CS are visible in the spec-
trum. The existence of exchangeable protons from
the hydroxyl and amine group is shown by a band at
3390 cm-1. A peak at wavelength 2841 cm-1 in the
aliphatic range (2800-3000 cm-1) is attributed to
asymmetric -CH2 stretching (Chen et al., 2022; Jiang
et al., 2019). The IR spectrum displayed a peak at
1000 cm-1, which is a representation of oxygenated
functional groups from aliphatic ethers and alcohols
(Tirtom et al., 2012). Ketone and amide C=O
stretching vibrations are thought to be responsible
for the peak at 1541 cm-1. CS properties were clearly
altered when it was grafted with aniline, indicating
that this process altered its characteristics. The main
difference in the peaks are, (i) a shift to the left in
the broad band from 3390 to 3348 cm-1. (ii) a peak
that was moved to the left from 1541 to 1579 cm-1;
(iii) left shift from 1415 to 1515 cm-1; and (iv) a shift
to the left, from 1000 to 1010 cm-1. This observation
in the shifting of the peaks may be due to the strong
bond that originated owning to chemical linkage bet-
ween aniline and CS. Another evidence of successful
grafting is seen in the enhanced intensity between
1200 cm-1 to 1500 cm-1. The existence of OH, and
NH2 groups contributes to the high binding capabi-
lity of this ligand. These groups are prone to the de-
velopment of metal complexes.
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Figure 1. FTIR pattern
of CS and MCS respectively.
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SEM results. The morphology and modifications of
chitosan following grafting were examined using
SEM. Figure 2 displays SEM pictures of the distinct
set of beads. Subsequently, on grafting aniline onto

the backbone of CS, the surface of MCS appeared to
be smoother and more visible than that of CS as a
result of the interaction between native chitosan
solution and aniline.

Figure 2. SEM images of (a) CS, (b) MCS respectively

RSM results

Table 1 shows the experimental design matrix as well
as their responses to the binding of metal ions onto
adsorbent. This table makes clear the impact of
various parameters on the outcomes. As operational
conditions vary, significant variances are also seen to
occur. The small discrepancy between the predicted
and actual values and the similarity provided evi-
dence that the model was adequate. The final quadra-

tic polynomial equation in Equations [10] and[11],
where pH, reaction time, adsorbate concen-tration,
temperature, and adsorbent dose are each denoted
by A, B, C, D, and E, provides the coded factors that
were utilized to match the experiment data. The
design matrix was well-fitted, and the model was
extremely dependable, according to the firm
correlation coefficients (R2) in the experimental and
predicted values which were 0.987 and 0.984 for
Pb2+ and Ni2+ ions respectively.

[10]

[11]

γPb = +94.19 + 2.19𝐴 + 1.08𝐵 + 2.52𝐶 + 3.95𝐷 + 6.04𝐸 − 14.96𝐴2 − 1.84𝐵22.45𝐶2 −

0.99𝐷2 − 3.47𝐸2 − 0.15𝐴𝐵 − 0.52𝐴𝐶 + 0.73𝐴𝐷 + 0.36𝐴𝐸 − 0.49𝐵𝐶 − 0.66𝐵𝐷 −

0.92𝐵𝐸 − 195𝐶𝐷 − 1.83𝐶𝐸 − 1.11𝐷𝐸

γNi = = +94.19 + 2.20𝐴 + 1.10𝐵 + 2.54𝐶 + 3.96𝐷 + 6.05𝐸 − 14.95𝐴2 − 1.85𝐵2 −
2.46𝐶2 − 0.99𝐷2 − 3.48𝐸2 − 0.17𝐴𝐵 − 0.54𝐴𝐶 + 0.72𝐴𝐷 + 0.34𝐴𝐸 − 0.50𝐵𝐶 − 0.68𝐵𝐷
− 0.93𝐵𝐸 − 1.97𝐶𝐷 − 1.85𝐶𝐸 − 1.12𝐷𝐸
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Using analysis of variance (ANOVA), it determined
how pH, adsorbate concentration, temperature,
adsorbent dose, and reaction time affected the
removal efficiency of Pb2+ and Ni2+ ions.
Consequently, at a 95% confidence level, a P-value of
less than 0.05 shows statistical relevance. In this in-

STD Facror 1
A: pH

Factor 2
B: Reaction 
time (min)

Factor 3
C: Adsorbate
concentration

(mg/L)

Factor 4
D:Temperatue

(oC)

Factor 5
E: Adsorbent 

dose (g)

Response 1; 
Pb2+ removal 

(%)

Response 2: 
Pb2+ removal

(%)

1 2.00 10.00 50.00 25.00 1.00 48.14 47.67
2 8.00 10.00 50.00 25.00 1.00 51.70 51.00
3 2.00 100.00 50.00 25.00 1.00 54.78 54.75
4 8.00 100.00 50.00 25.00 1.00 57.79 57.69
5 2.00 10.00 150.00 25.00 1.00 62.91 62.79
6 8.00 10.00 150.00 25.00 1.00 64.44 64.24
7 2.00 100.00 150.00 25.00 1.00 67.97 67.44
8 8.00 100.00 150.00 25.00 1.00 68.57 68.28
9 2.00 10.00 50.00 55.00 1.00 62.64 62.02
10 8.00 10.00 50.00 55.00 1.00 68.99 68.50
11 2.00 100.00 50.00 55.00 1.00 66.01 65.98
12 8.00 100.00 50.00 55.00 1.00 71.98 71.85
13 2.00 10.00 150.00 55.00 1.00 68.97 68.85
14 8.00 10.00 150.00 55.00 1.00 73.65 73.22
15 2.00 100.00 150.00 55.00 1.00 71.43 70.86
16 8.00 100.00 150.00 55.00 1.00 74.98 74.63
17 2.00 10.00 50.00 25.00 6.00 67.88 57.22
18 8.00 10.00 50.00 25.00 6.00 72.99 72.21
19 2.00 100.00 50.00 25.00 6.00 71.67 70.14
20 8.00 100.00 50.00 25.00 6.00 74.85 74.52
21 2.00 10.00 150.00 25.00 6.00 74.99 74.54
22 8.00 10.00 150.00 25.00 6.00 77.95 77.42
23 2.00 100.00 150.00 25.00 6.00 75.98 75.52
24 8.00 100.00 150.00 25.00 6.00 78.65 77.79
25 2.00 10.00 50.00 55.00 6.00 75.97 76.67
26 8.00 10.00 50.00 55.00 6.00 78.88 84.58
27 2.00 100.00 50.00 55.00 6.00 77.56 76.95
28 8.00 100.00 50.00 55.00 6.00 76.99 84.25
29 2.00 10.00 150.00 55.00 6.00 85.44 76.17
30 8.00 10.00 150.00 55.00 6.00 77.89 81.98
31 2.00 100.00 150.00 55.00 6.00 82.56 74.51
32 8.00 100.00 150.00 55.00 6.00 75.42 79.70
33 5.00 100.00 100.00 40.00 6.00 81.66 88.99
34 5.00 55.00 150.00 40.00 3.50 88.98 88.89
35 5.00 55.00 100.00 10.00 3.50 89.88 89.42
36 5.00 55.00 100.00 40.00 3.50 82.58 82.33
37 5.00 55.00 100.00 40.00 8.50 98.14 98.12
38 5.00 55.00 100.00 40.00 3.50 92.97 92.39
39 5.00 55.00 100.00 40.00 3.50 94.79 94.19
40 5.00 55.00 100.00 40.00 3.50 94.79 94.19
41 5.00 55.00 100.00 40.00 3.50 94.70 94.19
42 5.00 55.00 100.00 40.00 3.50 94.68 94.19
43 5.00 55.00 100.00 40.00 3.50 94.68 94.19
44 5.00 55.00 100.00 40.00 3.50 94.68 94.19
45 5.00 55.00 100.00 40.00 3.50 94.68 94.19

Table 1. Design matrix and response

stance, important model terms include A, B, C, D, E,
A2, B2, C2, D2, E2, AB, AC, AD, AE, BC, BD, BE,
CD, CE, and DE. Pb2+ and Ni2+ ions are indicated
by the ANOVA statistical results in Tables 2 and 3,
respectively and appeared to be similar. The
relevance of the model in characterizing the experi-
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Source Sum of Squuares DF Mean Square F-Values Prof > F
Model Signicant 7143.17 20 357.16 6.693E+006 < 0.0001
A 152.99 1 152.99 2.867E+006 < 0.0001
B 37.48 1 37.48 7.023E+005 < 0.0001
C 203.67 1 203.67 3.817E+006 < 0.0001
D 623.55 1 623.55 1.169E+007 < 0.0001
E 1166.08 1 1166.08 2.185E+007 < 0.0001
A2 818.90 1 818.90 1.153E+007 < 0.0001
B2 43.39 1 43.39 8.131E+005 < 0.0001
C2 77.08 1 77.08 1.444E+006 < 0.0001
D2 25.03 1 25.03 4.690E+005 < 0.0001
E2 153.97 1 153.97 2.886E+005 < 0.0001
AB 0.75 1 0.75 14004.16 < 0.0001
AC 8.81 1 8.81 1.651E+005 < 0.0001
AD 17.10 1 17.10 3.204E+006 < 0.0001
AE 4.13 1 4.13 77317.77 < 0.0001
BC 7.58 1 7.58 1.402E+005 < 0.0001
BD 14.03 1 14.03 2.630E+005 < 0.0001
BE 27.10 1 27.10 5.079E+005 < 0.0001
CD 122.19 1 122.19 2.290E+006 < 0.0001
CE 10313 1 10313 2.008E+006 < 0.0001
DE 39.18 1 39.18 7.343E+005 < 0.0001
Residual 1.281E-003 24 5.336E-005
Lack of fit 1.281E-003 17 7.533E-005
Pure error 0.000 1 0.000
Core total 7143.17 44

Source Sum of Squuares DF Mean Square F-Values Prof > F
Model Signicant 7143.17 20 357.16 6.693E+006 < 0.0001
A 152.99 1 152.99 2.867E+006 < 0.0001
B 37.48 1 37.48 7.023E+005 < 0.0001
C 203.67 1 203.67 3.817E+006 < 0.0001
D 623.55 1 623.55 1.169E+007 < 0.0001
E 1166.08 1 1166.08 2.185E+007 < 0.0001
A2 818.90 1 818.90 1.153E+007 < 0.0001
B2 43.39 1 43.39 8.131E+005 < 0.0001
C2 77.08 1 77.08 1.444E+006 < 0.0001
D2 25.03 1 25.03 4.690E+005 < 0.0001
E2 153.97 1 153.97 2.886E+005 < 0.0001
AB 0.75 1 0.75 14004.16 < 0.0001
AC 8.81 1 8.81 1.651E+005 < 0.0001
AD 17.10 1 17.10 3.204E+006 < 0.0001
AE 4.13 1 4.13 77317.77 < 0.0001
BC 7.58 1 7.58 1.402E+005 < 0.0001
BD 14.03 1 14.03 2.630E+005 < 0.0001
BE 27.10 1 27.10 5.079E+005 < 0.0001
CD 122.19 1 122.19 2.290E+006 < 0.0001
CE 10313 1 10313 2.008E+006 < 0.0001
DE 39.18 1 39.18 7.343E+005 < 0.0001
Residual 1.281E-003 24 5.336E-005
Lack of fit 1.281E-003 17 7.533E-005
Pure error 0.000 1 0.000
Core total 7143.17 44

Table 3. % Ni2+ Removal ANOVA for Response Surface Quadratic Model

Table 2. % Pb2+ Removal ANOVA for Response Surface Quadratic Model
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mental data is confirmed by the high F-values
(6693453.81 for Pb2+ ions and 6693453.12 for Ni2+

ions), respectively. A "Model F-value" this large may
happen by accident only 0.01% of the time. The mo-
dified R2 value for Pb2+ and Ni2+ ions and the ex-
pected value are in agreement. The precision analysis
resulted in a ratio of 813.789, which suggested a
sufficient signal for this work. The relationship
between the removal efficiency of the predicted and
actual values of Pb2+ and Ni2+ ions is shown in Figu-

res 3a and b. It can be seen from the graph that the
majority of the data points were clustered closely
together around the straight line of best fit. This
progression demonstrates consistency between the
predicted and experimental data, supporting the
model's importance (Banza & Rutto, 2022; Witek-
Krowiak et al., 2014) The effect of each variable on
removal efficiency was clarified using the
perturbation plot (Figure 4a and b).

Figure 3
Predicted removal efficiency 
from model against the 
experimental efficiency. 

Figure 4
Perturbation graphs 
showing the impact 
of each variable on 
removal efficiency.

Perturbation is the independent variable's resultant
variation in removal efficiency from the reference
point. The reference point was based on the
following parameters: pH 5, 55 min, 40 °C, 6.0 g of
adsorbent, and 150 mg/L of adsorbate. It was shown
from this plot that each variable increased removal
efficiency in a proportionate manner until it reached
its maximum value, at which point an additional
increase had no appreciable impact. Additionally, the
plot shows that each variable concave shape with re-

gard to removal efficiency is caused by a large
quadratic factor (Igberase et al., 2017) Figure 5 (a-f)
displays the findings from the 3D response surface
study. These graphs demonstrate how two variables
affect removal efficiency while holding the other
variables constant. This Figure shows how the
parameters affect the removal efficiency. The plots
show that the highest adsorbate removal occurs for
reaction times of 55 min, pH 5, 6.0 g of adsorbent,
150 mg/L of adsorbate, and 40 °C. These results are
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consistent with the literature (Ayoola et al., 2020;
Bohlouli et al., 2016; Igberase et al., 2017) The fact
that the highest adsorption in these figures occurred
at pH 5 demonstrates the critical role that pH plays
in the adsorption of Pb2+ and Ni2+ ions onto MCS.
According to (Zhang et al., 2022), pH is a key factor
in cation adsorption because it affects both the
ionization of chemically active sites on the adsorbent
surface and the chemical speciation of metals in
solution. However, at low pH, hydrogen ions are
abundant on the surface of the MCS, which prevents
metal ions from adhering due to competition for
binding sites and a reduction in removal efficiency.
Maximum pH was reached at 5 for both metals
because as pH rises, competition decreases in favour
of adsorption. Increasing the pH above 6 leads to
precipitation of the insoluble Pb2+ and Ni2+ ions
hydroxide which results in low removal efficiency
According to Figure 5(b, e), another factor that
significantly affects the binding of both metal ions is
the dosage of the adsorbent. In these two figures, it
can be seen that the removal efficiency increases as
the dosage is increased. This behaviour might be
brought on by the presence of enough sites for metal
ion binding. A higher adsorbent dosage can also
force a reduction in the charge of the dense outer
layer of the cells, which can block the adsorption
sites for both metal ions removal, which can be
attributed to the overlapping of adsorption sites as a
result of saturated adsorbent particles (Jakšić et al.,
2021; Kabuba & Banza, 2020). The overall
conclusion that removal efficiency is a function of all
the variables examined in the present work may be
drawn from each plot.

Levenberg-Marquardt (LM) algorithm 
modelling analysis for ANN
In this study, the network parameters were changed
to alter the coding process circumstances for LM.
During data simulations, the LM was limited to 10
data passes at most. In the LM training, there was no
early stopping mechanism employed. Figure 6
displays the ANN regression plot for training,
validation, test, and overall, together with the high
corelation coefficient of the Pb2+ and Ni2+ ions (R
close to 1 and equal to 1). This algorithm's
computation methods ensure that it can adapt to
noisy data sets. After 50 iterations and 16 completed
epochs, the LM model had received enough training.
Validation tests were run using the LM algorithm

(Witek-Krowiak et al., 2014), the LM algorithm
performs well and learns quickly (Biglarijoo et al.,
2017; Elmolla et al., 2010; Oladipo & Gazi, 2015).
LM's validation tests are crucial for identifying weight
inaccuracies that might have occurred during
training. The LM algorithm's starting weights as
obtained from Equation 8, are as follows: [1.1231;
1.3242; 1.3543; 1.3876; 0.6765; 1.1276; 1.643; 0.3543;
1.4324; 1.1242]. The decision to use the LM
algorithm was influenced by these weights. The MSE
produced by combining this algorithm with weights
has the lowest MSE of 0.000062, indicating that this
algorithm has very little error. The training session
was shortened by these weights. The values for
training, validation, and test ‘R’ were all equal to
0.9992, and it produced a distinct straight line.
Similar to the RSM method, the experimental runs
were split into 70, 15 and 15% portions for training,
validation, and testing, and these portions were then
transferred to the ANN model. As depicted in figure
6, while figure 7 depicts how the network interacts
with the training, testing, and validation data.
Correlation coefficients for training, testing,
validation, and total data were found to be 1,
0.96837, 0.96146, and 0.98994, respectively. The
straight line also demonstrates a linear relationship.
The experimental (target) data and the predicted
(output) data from the model correlate. The results
suggest that there is good agreement between the real
data and the data predicted by the model. The
coefficient of overall correlation therefore reveals the
excellent prediction capacity of the developed ANN
model and is suitable for properly forecasting data.
The plots of error analysis, which include the mean
square error and error histogram, are shown in
Figure 8. The adsorption procedure had the least
error, measuring -0.2832, according to the error
histogram with 20 bins. The ANN model used a
structure of 5-10-2 because of its 5 input parameters,
10 hidden layers, and 2 replies (output). Its number
of neurons was discovered to be 10 after 50
iterations. As seen in figure 9, the effectiveness of the
ANN during training is evaluated using MSE.
According to the research of the MSE's mono-
layered architecture, performance improved with
increasing order. After many trial and error runs, the
trained network's best removal efficiency
performance was 17.3472 at epoch 10 for the MSE
analysis. It was discovered that this value enables
stable and quick learning.
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Three-dimensional (3D) RSM plots

Figure 5a-f. Three-dimensional (3D) RSM graphs
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Figure 6
ANN architecture and
LM algorithm in predicting
removal efficiency of metal
ions by MCS.

Figure 8. ANN error histogram analysis for metal ions adsorption Figure 9. Performance graph for Levenberg-Marquardt
at epochs 16.

Figure 7
Regression plot describing 
graphical representation 
for Levenberg-Marquardt

EQA 61 (2024): 1-15E. Igberase, N T. Sithole

DOI: 10.6092/issn.2281-4485/18471

R etr
ac

ted
 A rtic

le
of

R etr
ac

ted
 A rtic

le
of

R etr
ac

ted
 A rtic

le

R etr
ac

ted
 A rtic

leFigure

R etr
ac

ted
 A rtic

leFigure 7

R etr
ac

ted
 A rtic

le7
Regression 

R etr
ac

ted
 A rtic

leRegression plot describing 

R etr
ac

ted
 A rtic

leplot describing 
graphical representation 

R etr
ac

ted
 A rtic

legraphical representation 
for 

R etr
ac

ted
 A rtic

lefor Levenberg

R etr
ac

ted
 A rtic

leLevenberg-

R etr
ac

ted
 A rtic

le-Levenberg-Levenberg

R etr
ac

ted
 A rtic

leLevenberg-Levenberg Marquardt

R etr
ac

ted
 A rtic

leMarquardt-Marquardt-

R etr
ac

ted
 A rtic

le-Marquardt-



13

The prediction accuracy of developed ANN and
RSM models
One experiment was evaluated at the level of the
process parameters, as indicated in Table 4, and
ANN and RSM models were evaluated for the
prediction of metal ions removal effectiveness (%).
The comparison of actual and expected removal
efficiencies (%) showed that ANN and RSM models
have a promising capacity to forecast values that are
noticeably near to actual values. To compare
statistically the adequacy of both models, the
statistical significance and error distribution of
removal (%) efficiencies predicted by RSM and ANN
were further evaluated. The coefficient of deter-
mination (R2) is seen as the most common statistical
metric for evaluating the accuracy of a prediction.
This method focuses on the linear correlations
between the experimental data and the model's
predictions. This method offers no information re-

garding nonlinear relationships or error distribution.
Therefore, to ascertain the magnitude and measure
errors distribution, the non-linear statistic metrics
were used. This outcome is shown in Table 5, which
calculates the differences between experimental and
anticipated Pb2+ and Ni2+ levels using the RSM and
ANN approaches, respectively. Despite this, the R2
values for the two models are near to one another,
indicating that the predictions are more in line with
the actual values. When compared to RSM, a lower
error function value was obtained for ANN.
Therefore, according to statistical criteria, ANN
outperforms RSM in terms of model predictions. In
comparison, the ANN model's statistical metrics and
prediction capabilities outperformed the RSM model.
Therefore, applications of ANN and RSM
techniques for modelling and optimizing the
adsorption process are validated based on the
outstanding accuracy of the projected responses.

A B C D E
Actual 

Removal
%

Predicted 
removal 

(ANN) %

Predicted 
removal 
(RSM) %

5 55 100 40 6 98.14 98.17 98.65

Error function ANN RSM
Marquart’s percent standard deviation (MPSD) 0.0065 0.0532
Chi-square test (𝜒2) 0.0022 0.0411
Root means square error (RMSE) 0.0036 0.0732
Mean squared error (MSE) 0.0002 0.0011
Sum of  the squares of  errors (SSE) 0.0005 0.0031
Average relative errors (ARE) 0.0062 0.0320

Table 5
Non-linear error functions list as

statistical measure fit for ANN
and RSM.

Table 4
Comparison between the
experimental and predicted values
of Pb2+ ions removal efficiency
by ANN and RSM.

Conclusion

Simulation experiments utilizing RSM and ANN we-
re carried out in the current research to assess the re-
moval efficiency of Pb2+ and Ni2+ ions in aqueous
solution. In RSM experimental data, CCD was used,
and in ANN, LM training network was utilised in the
backpropagation approach. Five input layer neurons
and two output layer neurons make up various ANN
architectures that are based on hidden layer trigger al-
gorithms and hidden layer cells for LM coding. Using
error functions and goodness of fit (R2) analysis, a
comparative evaluation of the removal efficiency pre-
diction performance was conducted. Both models ac-
curately predicted the removal efficiency of metal

ions. To forecast the adsorption of Pb2+ and Ni2+

ions in aqueous solution, a three-layer backpropaga-
tion neural network was optimized. With a correla-
tion coefficient (R2) of 0.997 and an MSE of 0.00006,
the experimental result and the result predicted by
RSM and ANN are highly similar. The results of the
sensitivity analysis demonstrated that the adsorption
process is strongly influenced by all of the examined
variables (reaction time, temperature, pH, adsorbent
mass, and adsorbate concentration). Results from
RSM-CCD and ANN demonstrated the modelling
capacity to accurately simulate and predict process
behaviour. ANN model performed better with re-
gards to statistical analysis and R2 values. Pb2+ and
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Ni2+ ions model equations were created utilizing sets
of experimental data. The experimental results and
the projected values agreed very well. The relevance
of the model was described using the model equa-
tions. The characterisation outcomes for both unmo-
dified and modified chitosan beads were noteworthy.
These results suggest that modified chitosan beads
may be effective at removing metal ions from waste-
water.
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