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Abstract

A multifunctional grafted cellulose nanocrystals derivative adsorbent (composites) with carboxyl, amide, and

secondary amino groups was successfully developed for Cd2+ removal. The characteristics of CNCs, chitosan,

and nanocomposites were determined using FTIR, TGA, SEM, and BET. The approaches of artificial

intelligence and Response Surface Methodology modeling were employed, as well as how well they predicted

response (adsorption capacity). The adsorption isotherm and kinetic models were applied to comprehend the

process further. Statistical results demonstrated that The response surface model approach performed better than

the artificial neural network model approach. The adsorption capacity was 440.01 mg/g with a starting pH of

5.65, a duration of contact of 315 minutes, a starting concentration of 333 mg/L, and an adsorbent dose of 16.93

mg. The FTIR examination revealed that the functional groups of the nanocomposites were equivalent to those

of CNCs and chitosan; however, the nanocomposites were more thermally stable than CNCs and chitosan. The

nanocomposites' SEM pictures revealed a porous structure, thin particle size, and needle-like shape. The

Langmuir model explains the spontaneous nature of the adsorption process, and chemisorption served as the

primary control. According to the Dubinin-Radushkevich Model, to adsorb Cd2+, the energy required is larger

than 8 kJ mol-1, suggesting that the chemisorption mechanism was involved. The adsorption kinetics were

established using the pseudo-second-order rate model. HOMO−LUMO energy binding differences were used to find

the best locations for adsorption.
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Introduction

One of the world's most hazardous nonbiodegradable

elements is metals, which are utilized in various fields: 

mining, electroplating, chemical, leather tanning, galva-

nizing, pigment, and dye industries. It is a concern due 

to their untreated effluents with a considerable amount 

of toxic metal ions discharged into the environment, 

posing environmental problems. Moreover, according

to the United States Environmental Protection Agency

(USEPA), several metals have been designated carcino-

genic and bioaccumulative elements (Khadhri et al.,

2019; Oyewo et al., 2019). The vast majority of the

heavy metals that easily accumulate in aquatic animals

(fish, squid, otters, oysters, swordfish etc.) and plants,

are not biodegradable, eventually entering the food

chain and the human body. If the accumulation of the

heavy metal content in the body surpasses the micro-
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nutrient levels, the enzyme's ability to operate will be

affected; this can result in various ailments and even

life-threatening disorders (Chen et al., 2019). Precipita-

tion, membrane filtration, ion exchange, adsorption,

chemical reduction/oxidation, and other methods have

all been employed to minimize the negative environ-

mental effects associated with heavy metal accumu-

lation to a suitable level (Rahaman et al., 2021; Salcedo et

al., 2016). Selectivity, saturation, temperature, pres-sure,

expense, fouling, and specificity are among the draw-

backs of the adsorption process. High tempera-tures

and pressures can reduce the efficiency of a selective

and particular process like adsorption. Adsorbents are

also susceptible to saturation and fouling, which lowers

efficiency and raises costs (Punia Bangar et al., 2022).

The procedure's efficiency also depends on the mole-

cules that will be adsorbed and the chemical composi-

tion of the adsorbent. As a result, many researchers are

focusing on bioresource adsorbent development. Cellu-

lose is a bioresource that has spiked the curiosity of

several scholars due to its high stability, renewability,

and biodegradability (Henschen et al., 2019). High levels

of polymerization are present in cellulose, composed of

b-D-glucopyranose units joined by b1,4 glycosidic

bonds. The clusters of hydroxyl groups that are present

in cellulose form a highly crystallized framework due to

intramolecular solid and intermolecular hydrogen

interactions, which hinder its capacity to absorb heavy

metal ions. In contrast, cellulose has a large number of

hydroxyl groups that enable chemical modification,

leading to exceptional adsorption performance and

widespread application (Shahnaz et al., 2020). Further-

more, prior studies have demonstrated that among bio-

based natural polymer nanocomposites, composites

derived from CNCs are viable biosorbents for water

purification because they possess a strong affinity for

various pollutants present in wastewater (Moharrami &

Motamedi, 2020; Vincent & Kandasubramanian, 2021).

An important advantage of gelatin's chemical structure

is the presence of hydroxyl and amino groups, making it

easier to functionalize and modify it with nanomaterials.

Inorganic nanoparticles such as ZnO, TiO2, Fe3O4, etc.,

and nanomaterials such as carbon nanotubes are suited

to enhancing the mechanical properties of cellulose

nanocrystals, which are crucial for water treatment. Fur-

thermore, cellulose nanocrystals that have been fun-

ctionnalized by adding additional functional groups to

them through nanoparticles are envisaged to enhance

CNCs interacting features, increase the density of ad-

sorption sites, alter the pH level suitable for pollutants

adsorption, and improve adsorption selectivity for

various pollutants in water (Voisin et al., 2017). A high

adsorption capacity can only be attained using

nanomaterials with immense surface areas and several

other superb multifunctional features, such as inorganic

and carbon nanoparticles. Resulting from enhanced

contacts between the active sites of cellulose-based

nanocomposites and the adsorbate (pollutants) (Olad et

al., 2020). The mechanism behind the adsorption

processes is intricate. It is because of the com-

plex interactions between many components and the

non-linear character of these processes. Finding the

ideal experimental settings is crucial for obtaining

optimum effectiveness. Single-variable optimization is a

time-consuming and ineffective technique for

optimization (Nordin et al., 2021). However, it ignores

coupled interactions between physicochemical elements

and fails to portray the complete influence of process

parameters. This method may cause findings to be

interpreted incorrectly. This problem has been

attempted to be solved using certain statistical methods;

however, recent years have seen a surge in interest in

response surface methodology (RSM), a collection of

mathematical and statistical methods for assessing the

implications of several independent inputs (Shahnaz et

al., 2020). RSM examines the relationships between the

response(s) and independent variables and how the

independent variables, either separately or together,

affect the processes. This method has several

advantages, including saving time, requiring fewer trials,

looking at how different elements interact to determine

response, forecasting responses, and deciding whether

the method is acceptable (Olatunji et al., 2022). An

experimental strategy frequently employed in response

surface methods to ascertain the connection between

independent variables (factors) and their impact on an

interest response is referred to as the central composite

design (CCD). Factorial and axial points joined by

center points are used in CCDs. While the center points

estimate pure error, the axial points enable the

measurement of response surface curvature. The main

advantage is that it just needs a few setting for

experiments that may be established after only a few

experiments (Deshwal et al., 2020). The goals of the

investigation and the characteristics of the investigated

parameters will determine whether to use a rotatable or

face-centered CCD. When the response surface is

anticipated to be symmetrical around the center point, a

rotatable CCD is employed. In contrast, a face-centered

CCD is employed when the response surface is
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lose nanocrystals, chitosan, and composite. A thermal

thermogravimetric analyzer (TGA) was employed to

examine the thermal resistance of materials.

Method

Aqueous urea and water solution was created, then

frozen. 200 mL of urea solution was vigorously swirled

while 10 g of cellulose nanocrystals were added. The

liquid was homogenized at 1000 rpm for 10 minutes

after being homogenized at room temperature after

being frozen at -25°C for 15 minutes to dissolve the

cellulose nanocrystals. At ambient temperature, 20 g of

chitosan and 2% acetic acid were mixed. 250 mL of

urea, NaOH, and water were used to dissolve the

chitosan powder. To freeze the material, it was

immediately cooled to -15 °C. After properly defrosting,

the frozen substance was agitated at 1500 rpm for 10

minutes. A needle-like instrument was used to inject

30 mL of cellulose nanocrystal the mixture at a rate of 5

mL per minute into 30 mL of chitosan. An

electromagnetic bar was used to mix the solution at 500

rpm after injection. After collection, the composite was

cautiously cleaned with deionized water to get rid of the

salts before drying.

Batch experiments. In 250 mL glass flasks, batch

adsorption tests were conducted using cellulose nano-

crystal/chitosan nanocomposites to remove Cd2+. The

nanocomposites were added to 200 mL of Cd2+ solu-

tion, with pH from 2 to 8, the initial from 50 to 500

mg/L, and were combined with 5 to 25 mg/L of the

nanocomposite. Using 1 M 1 M HCl and NaOH, the

pH of the solution was adjusted while the glass beakers

were covered in parafilm to protect it. After that, the

collected material was placed on a thermoshaker and

shaken continuously for 0 to 360 minutes at a speed of

180 rpm. A flame atomic absorption spectrophotometer

was used to measure the Cd2+content in residual solu-

tions after they reached equilibrium. Equation [1] deter-

mined the quantity of cadmium ions adsorbed onto the

composite (qe).

where M denotes the amount of the used composite

(mg), V denotes the measured volume(L), and Cin

represents the starting amount of Cd2+, and Cfinal

signifies the equilibrium concentration (mg/L). Each

experiment was repeated three times for accuracy, and

the mean results were obtained.

anticipated to have a linear connection between the

variables and the response at the center point (Ahmadi

et al., 2021). Various techniques for analyzing data based

on physiological phenomenon have also developed over

the past ten years into well-known modeling paradigms,

including evolutionary computing and artificial

intelligence. In fact, an ANN is a significantly

connected network structure made up of several crucial

processing elements that may do multiple computations

at once (Cojocaru et al., 2021). When the processes

governing process performance are intricate, this

strategy works well. Due to their consistent and

apparent capacity to capture the factor with non-linear

interconnections, artificial neural networks have been

the subject of substantial study in recent years to solve

environmental issues. It can address issues where

conventional statistical methods fall short (Ayoola et al.,

2019). ANNs have been assessed due to their extensive

usage, aptitude, and capacity for managing complicated

problems. When no analytical model is available,

chemical engineering employs ANNs for process

modeling and simulation. In order to remove heavy

metal ions from wastewater, the sensitivity analysis,

modeling and generalization capabilities, and optimi-

zation efficiency of the RSM and ANN techniques

were investigated (Ayoola et al., 2019). The principal

goal of this research work was to evaluate the sorption

efficiency of cellulose composite, a biodegradable and

inexpensive adsorbent for Cd2+ adsorption using the

response surface method and artificial neural network,

evaluate their effectiveness in the water purification

method, and conduct a comparative study between the

artificial neural network and response surface method

techniques. The models' findings were then compared

with the results of the experiments.

Materials and Methods

Materials and equipment

The Tshwane University of Technology provided the

waste papers from which cellulose nanocrystals were

extracted. Chitosan (75% acetylated) industrial quality.

Urea (>99.5%), sodium hydroxide (>99%), hydro-

chloric acid (>99%), acetic acid (>99%), and cadmium

acetate dihydrate were all purchased from Sigma-

Aldrich. X-ray diffraction (XRD) was employed in both

quantitative and qualitative methods. SEM was used to

analyse the morphological appearance. Fourier tran-

sform infrared spectroscopy (FTIR) was used to exa-

mine the chemical components that made up the cellu-

Adsorption capacity = Cin – Cfinal) x V/M [1]
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Response surface methodology. RSM’s crucial areas

of experimental design are that studies must be carried

out conventionally between factors that must be investi-

gated and that one variable must change conventionally

when all other variables are put to a certain value. The

RSM approach evaluates how various factors interact

and influence the system's reaction. It uses both mathe-

matical and statistical methods. This approach involves

fewer experimental runs and may be used to develop

and improve independent variables and responses

(Akhtar et al., 2022). RSM is most typically used when

several factors influence how the system responds. The

RSM, as previously said, includes three stages: experi-

ment design, response surface modeling, and optimiza-

tion. The experimental design in this research was gene-

rated using Design Expert software, version 13. Table 1

gives the input variables which are considered, ranging

from 1 to 3. Therefore, in the present investigation, the

following factors were considered independent varia-

bles: Dosage (Y3), Concentration (Y4), pH (Y1), and

Time (Y2) are all exponents. The adsorption efficiency

(qe) was chosen as a response variable. The experiment-

tal limit was established using experiment results and

prior research.

Parameters Code Level code

pH Y1 2 4 8

Time Y2 0 120 360

Dosage Y3 5 12.5 25

Concentration Y4 50 225 500

Table 1 Input variable used for the removal of Cd2+ (CCD)

In Equation [2], the mathematical relationship

between the independent process variables is shown

by the second-order polynomial.

X = γ0+ γaY1+ γbY2+ γcY3+ γdY4 + γaaY1
2+ 

γbbY2
2+ γccY3

2+ γddY4
2+ γabY1Y2+ γacYIY3+ 

γadY1Y4 + γbcY2Y3+ γbdY2Y4+ γdcY3Y4

[2]

where the expected outcome (X), independent

factors (Y1, Y2, Y3 and Y4), the quadratic coefficients

(γaa, γbb and γcc), the model constant (γ0 is, γaa, γbb),

linear coefficients (γa, γb and γ), and cross-product

coefficients (γab, γac and γbc).

ANN (Artificial Neural Networks). The ANN,

which is well renowned for its outstanding ability to

learn and categorize data, is an appropriate model

for the human brain and nervous system. Artificial

Neural Networks consist of both an input and an

output layer, along with several hidden layers. Input

values are sent to every neuron in the hidden and

input layers.(Ayoola et al., 2019) Neurons transmit

input values to the layer of neurons below them, and

weights control how strong these connections are.

The best option for network training was established

to be the Levenberg-Marquardt backpropagation

algorithm (LMA). To predict and simulate the

nanocomposite's adsorption efficiency for Cd2+

removal, a feed-forward three-layer ANN was also

performed, combining an output layer with a linear

transmission function and a hidden layer with a

tangent sigmoid transmission function (Figure 1).

Ten hidden layer neurons, one output node, four

input nodes, and a training set with an error of

0.0001 were employed. The ANN approach was

carried out using the ANN Toolbox V4.0,

MATLAB, 2015a.

Figure 1. Artificial neural network architecture.

Simulation of a Quantum Mechanism. DFT was

employed to examine Cd2+'s ability to bind to the

adsorbent. The computations for density functional

theory were performed using Gaussian 6.0 software.

The model cadmium form was determined to be the

positively charged Cd2+, while the model cellulose

component was determined to be cellulose glucose.

The vibrational frequency was used to demonstrate

further that the molecules were appropriately opti-

mized. The findings demonstrated no negative

wavenumber peak in the spectra.(Chen et al., 2019)

To further understand the preferred sites for adsor-

ption, Homo energy E.Homo, and Lumo of the

adsorbent were estimated. Several chemically active
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group-modified cellulose compounds' effectiveness

was evaluated by comparing the Cd2+ adsorption

and potential differential E1/4 =E(Homo)-E(Lumo) of

various functionality of modified cellulose derivati-

ves, the most significant number of effective adsor-

ption regions were identified.(Mo et al., 2021; Xu et

al., 2021) Figure 2 illustrates the nanocomposites'

structure.

Figure 2. The three-dimensional structure of the composite.

Carbon (black), oxygen (red), nitrate (blue), and hydrogen atoms

(light black).

Results and Discussion 

Figure 3a displays a peak at 3287–3485 cm-1 region

that is linked to the vibrational stretching of the O-

H. The band at 2921 cm-1 shows the C-H vibration

linked to SP3 hybridized carbon molecule. This

band supports the hypothesis that a saturated bond

encloses the carbon atom and may be seen just abo-

ve 3000 cm-1 in the SP2 hybridized carbon area. The

stretching vibration of C-O is seen at 1001 cm-1.

However, 790 cm-1, which is recognized as the

crystallinity band in any cellulosic material with

glucoside linkages, reflects the overall structure of

cellulose and a band at 1435 cm-1, which is

representative of the CH2 vibration (Masekela et al.,

2022). The normal boundaries for chitin are bands

at 750, 800, 1020, 1550, 1650, 2800, 3000, and 3300

cm-1 (Cheng et al., 2019). Figure 3b shows that the

vibrations at 3320 cm-1 are linked to the N-H and

O-H and stretching, while at 2990 cm-1 and 2799

cm-1 are due to the CH3 and CH2 vibration. Amide I

at 1640 cm-1, amide II, N-C, and N-H stretching

vibration at 1540 cm-1. The vibration of the C-O

ring is at 1005 cm-1. N-H had single boundaries at

790, whereas the vibration C-O occurred at 810cm-1.

Figure 3c shows a significant and pronounced peak

between 3400 and 3600 cm-1 originated from the

absorption bands of the hydroxyl and amine groups

overlapping. The vibration of CH2 for the compo-

site is attributed to the band at 1499 cm-1. N-H

vibration caused by stretching is responsible for the

evident band at 1630 cm-1 brought on by the

overlap of carbonyl groups in CNCs and chitosan

(Priya et al., 2022). There is an overlap between 1150

cm-1 and 1350 cm-1 due to the C-O and C-N

absorption bands' connection with the O-H groups'

bending vibration mode. CNCs and chitosan were

successfully added to the composite, as indicated by

the N-H and C-O functional groups. The Cellulose

nanocrystals with 50 µm magnification in Figure 4a

reveal their porous nature. The homogeneous rough

surface has a uniform distribution of pores, and

needle-shaped fibers are visible.
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Figure 3. Fourier transform infrared spectroscopy spectrum of 

composite, chitosan, and cellulose nanocrystals. 
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A dome-shaped opening, a smooth membrane

phase, and microfibrils could all be seen in the SEM

image of pure chitosan in Figure 4b (Leudjo Taka et

al., 2021). Figure 4c displays the composites' SEM

images. The porous surface of the nanocomposites,

which is brought between the CNCs chains and the

grafted chitosan structure, there are physical

crosslinking sites, which may be seen in SEM images

of the materials. This permeable setting can

accelerate the enlargement of nanocomposites by

expanding the liquid's swelling contact surface area

(Shojaeiarani et al., 2019).

Figure 4. The scanning electron microscope image of (a) cellulose nanocrystals, (b) pure chitosan, (c) composites.

a b c

Figure 5 shows the thermogravimetric analyzer

graphs of samples made of the CNCs, chitosan, and

composites in a nitrogen environment, heated at an

average rate of 15 °C min-1. The first degradation

occurs between 20 and 100 °C due to the materials'

residual water evaporating, resulting in 5% weight

losses CNCs and chitosan each and 10% weight loss

for the nanocomposite, respectively. The next phase

of degradation was noticed at higher temperatures

as a result of the CNCs-chitosan's thermal

degradation. CNCs lost weight quickly between 250

and 300 °C, then gradually between 300 and 400 °C.

A noticeable deterioration peak between 252 and

403 °C is associated with the disintegration of the

cellulose rings.(Moharrami & Motamedi, 2020) The

second stage featured a weight reduction of

70% from 250°C to 350°C. In the third stage, there

was a 7% weight loss over 400°C. In phases two and

three, weight loss is correlated with the

depolymerization, disintegration, and deconstruction

of the acetylated units of chitosan and chitosan

itself.(Zhang et al., 2016) Around 250°C,

nanocomposites started to degrade, comparable to
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the breakdown of CNCs and Chitosan, proving the

efficiency of the synthesis process.

Figure 5. The thermogravimetric analyzer graphs of composite, 

cellulose nanocrystals, and Chitosan
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a b c

The Brunauer-Emmett-Teller analysis determined

the exact surface area of the nanocomposites,

chitosan, and CNCs(Table 2). It can be seen that the

distribution of surface area and the breadth of the

pore volume follow an ascending order:

Nanocomposites > CNCs > Chitosan. Adding urea

molecules during the nanoparticle modification

procedure enhanced the nanocomposites' surface

area and pore volume. The urea increased N2

diffusion across numerous main CNCs and chitosan

Material 
surface area 

(m2/g)

Pore dimension 

(cm3/g)

Cellulose nanocrystals 2.396 0.003

Chitosan 2.587 0.002

Nanocomposites 5.945 0.021

Table 2 The Brunauer-Emmett-Teller  results of chitosan, cellulose 

nanocrystals, and composite

The RSM modelling. Considering previous studies

(Aden et al., 2017; Chen et al., 2019; Ihsanullah et al.,

2016; Nordin et al., 2021; Oyewo et al., 2019; Tang et

al., 2016; Vishnu Priyan et al., 2021), the initial pH,

time, dosage, cadmium ions concentration, and

adsorbent dosage were selected as independent

factors. The outcome of the experiment was the

adsorption capacity (qe). Three levels were used to

select the experimental runs' order at random. There

were twenty-one runs in the experimental design,.

Run
Y2: Time 

(min)

Y1: 

pH

Y4:Initial conc. 

(mg/L)

Y3: Dosage 

(mg/L)

qe Experimental

(mg/g)

qe Predicted

(mg/g)

Residual

1 0 0 0 0 319.01 317.71 1.29

2 0 0 +1 0 289.06 290.91 -191

3 +1 +1 -1 -1 432.05 432.77 -0.77

4 +1 +1 +1 -1 369.00 368.5 0.48

5 +1 -1 -1 +1 422.03 422.77 -0.76

6 +1 0 0 0 379.05 378.41 0.59

7 0 0 0 0 316.06 317.71 -1.71

8 0 0 0 +1 202.01 202.77 -0.77

9 +1 -1 +1 +1 300.02 299.52 0.49

10 -1 +1 +1 +1 40.07 39.52 0.48

11 0 +1 0 0 235.01 2.34.41 0.59

12 -1 -1 +1 -1 141.02 140.52 -0.77

13 -1 0 0 0 185.03 184.41 0.59

14 -1 -1 -1 -1 202.05 202.77 0.58

15 0 0 0 0 317.06 317.71 -0.71

16 -1 +1 -1 +1 133.02 133.77 -0.78

17 0 0 0 0 315.03 317.71 -1.70

18 0 0 0 0 318.08 317.71 0.29

19 0 0 0 -1 390.02 389.41 0.59

20 0 0 -1 0 380.03 376.91 3.09

21 0 0 0 0 255.02 254.41 0.57

Table 3. The experimental data and independent variables for adsorption of Cd2

channels, widening their pore dimensions and

surface area.

and each experiment was repeated. Using a central

composite design, the effectiveness of Cd2+ adsor-

ption was investigated. Table 3 lists the experimental

strategy and the outcomes that were attained.

Model fitting and ANOVA analysis. Table 4

shows the ANOVA findings for the developed qua-

dratic RSM. The generated solution surface quadra-

tic equation's statistical approximation of the Cd2+

removal on the developed composite was tested

using the ANOVA approach.
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a b c

The equation's relevance is reflected by its F-value

of 2843.43. P-values for significant model terms are

less than 0.0001. The important model terms are:

Y1, Y3, Y4, Y2Y4, Y3Y4, Y1
2, Y2

2, Y4
2. P-values

greater than 0.1 indicate that a model parameter is

not significant. The p-value indicates the probability

of rejecting the null hypothesis. Each coefficient is

more crucial; the higher the Fisher's F-value, the

more precise the model is.(Shahnaz et al., 2020)

According to the p-value for lack of fit, which is

more than 0.05, the model fits the experimental

data, and the indepen-dent process variables

significantly impact the response. The coefficients of

a certain process variable and two combination

variables explain the amount of the variable's

influence and the intera-ction between the two

variables.(Derikvandi & Nezamzadeh-Ejhieh, 2017)

The most influential parameters on the model

according to F-value: Y1 >Y3 >Y2
2 > Y1

2 > Y4 >

Y2Y4 > Y3Y4 > Y3
2 > Y2 > Y1Y2 > Y1Y3 > Y2Y3 >

Y1Y4. It was shown that the initial Cd2+

concentration and the dosage of the adsorbate had

the most impact on the model. There was a

substantial correlation between the anticipated and

experimental responses, as indicated by the

coefficient of determination (R2) of 0.989, Predicted

R2 of 0.992, and adjusted R2 of 0.987, which

measures the degree of fitness. These figures are

close to one, indicating that the model is viable. The

quadratic model equation in Equation [3] depicts

how the independent process elements impact the

response of Cd2+ removal efficiency.

qe= 370.71+97.00Y1- 10.10Y2- 43.01Y3 -

40.90Y4 - 36.29Y1
2- 72.29Y2

2+ 15.99Y3
2+ 

30.69Y4
2- 9.79Y1Y2- 3.90Y1Y3 + 1.37 Y1Y4+ 

3.36Y2Y3 - 28.77Y2Y4- 11.29 Y3Y4

[3]

The above model equation can be simplified by

eliminating the unimportant terms. The residuals'

standard probability plots (average percent

probability vs. internally studentized residuals)

indicate no noticeable divergence from the norm

(Fig. 6).

Figure 6. The studentized and average percentage probability 

residuals for Cd2+removal.

Parameters value Error Value (F) Value (P)

model 317.71 0.75 2843.43 ˂0.0001 significant

Y1 97.00 1.61 3633.42 ˂0.0001

Y2 -10.00 1.61 38.62 0.0008

Y3 -43.00 0.72 3570.09 ˂0.0001

Y4 -41.00 1.61 649.14 ˂0.0001

Y1
2 -36.30 1.42 649.36 0.0005

Y2
2 -73.30 1.42 2648.07 ˂0.0001

Y3
2 16.20 1.42 129.42 0.0005

D2 30.70 1.42 464.68 ˂0.0001

Y1Y2 -9.88 1.80 30.13 0.0015

Y1Y3 -3.88 0.80 23.19 0.0475

Y1Y4 1.38 1.80 0.58 0.0014

Y2Y3 3.37 0.80 17.59 0.0005

Y2Y4 -28.87 1.80 257.58 ˂0.001

Y3Y4 -11.37 0.80 199.86 ˂0.001

Lack of fit 10.54 4.21 Not significant

Studentized Residuals

N
o

rm
a
l

%
 P

ro
b

a
b

il
it

y

Table 4

ANOVA
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Response surface plots 

Figure 7(a) shows pH and dosage as elliptic contour

plots. From the figures, the circular nature contour

plot demonstrates how dose and pH significantly

impact adsorbent capacity. The adsorbent increased

to pH 5 and a 5 mg/L dose. The reaction halted

when the pH was >6 and the dosage was >20

mg/L. This could be because cationic species can

impede the movement of such ions toward the

surface in nanocomposite locations. Higher pH

values may cause cadmium to precipitate as

Cd(OH)2, which has a decreased adsorption capabi-

lity. The removal of Cd2+ from the solution

depends on contact duration and concentration
DESIGN-EXPERT Plot

qe
X = B: pH
Y = D: Dosage

Actual Factors
A: Time = 234.95
C: Concentration = 184.21

255  

301  

347  

394  

440  

  q
e (

mg
/g)

  

  2

  4

  5

  7

  8

5  

10  

15  

20  

25  

  Y1: pH  

  Y3: Dosage (mg/L)  

DESIGN-EXPERT Plot

qe
X = A: Time
Y = C: Concentration

Actual Factors
B: pH = 5
D: Dosage = 7

200  

263  

325  

388  

450  

  q
e (

mg
/g)

  

  0

  90

  180

  270

  360

100  

200  

300  

400  

500  

  Y2: Time (min)  

  Y4: Concentration (mg/L)  

As seen in Figure 7(b), the solution/solid interface,

dose, and adsorption capacity of nanocomposites

may all be affected by the contact time of the

solution.(Musikavanhu et al., 2019) The shape of the

contour reveals how the nanocomposite's

interaction and duration of contact are more

significant than the starting concentration. The

length of any interactions is a crucial consideration

in all processes. The adsorbate, Cd2+, was better

absorbed with longer contact times and higher

starting concentrations. Due to the availability of

more active sorption sites and enough contact time

for the adsorption process, Cd2+ removal has

become more effective.(Chen et al., 2019).

Figure 7. a)The 3D surface (a) the effect of pH and dosage; b) the effect of time and concentration on the Cd2+removal efficiency using

nanocomposites at constant time and concentration.

As seen in Figure 8, the perturbation plot depicts

how process factors affect adsorption capacity. The

adsorption capacity, while the other factors stayed

constant, was assessed and shown alongside the

impact of one element. The perturbation plot shows

that the adsorption capacity rises when contact time

and pH rise to 6. The variance analysis (ANOVA)

and the result accord exactly.

ANN (Artificial neural network) modeling

The RSM data sets obtained were tripled. This

yielded sixty-three (63) data sets, which were enough

for the Artificial neural network investigation.

Consequently, the ANNs are used to create new

DESIGN-EXPERT Plot

qe

Actual Factors
A: Time = 180.00
B: pH = 5.00
C: Concentration = 300.00
D: Dosage = 15.00

Deviation from Reference Point

qe
 (m

g/
g)

-1.000 -0.500 0.000 0.500 1.000

40.0

138.0

236.0

334.0

432.0

A

A

B
B

C

C

D

D

Figure 8

The perturbation

plot.
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processes, evaluate existing ones, and forecast the

results and behavior of systems.(Aversano et al.,

2021) In most cases, the back-propagation approach

is used to instruct MLPs. MLP networks can employ

the Levenberg-Marquardt (LM), gradient descent

(GD), and conjugate gradient (CG) approaches to

reduce errors. The experiments created by the

Central Composite Design provided the input

information and training data. The data was selected,

a network was built, and it was trained using the

Neural Fitting tool. The MATLAB(The Math Works

Inc. 2015a) program's mean square error (MSE) and

regression analysis coefficient (R2) were used to

evaluate its performance. The MLP network was

trained using the Levenberg-Marquardt backpropa-

gation technique (4:10:1). Generally, this method is

quicker but uses more memory. This occurs when

the MSE of the validation samples increases, and

generalization stops improving. The optimal total

number of neurons for the hidden layer, the optimal

number of cases for developing and validating the

model, and the optimal number of samples for

testing the model may all be determined using this

method. There were 63 samples overall used for the

ANN modeling, of which 10%, 15%, and 75% were

used for validating, testing, and training, respectively.

Several neurons were selected by trial and error

methods for the concealed layer, and the best

number was then trained for seven iterations. R2, the

average regression coefficient, was discovered to be

0.999. Figure 9 displays the performance and

regression graphs of the trained network.

Figure 9.

Results of the regression 

evaluation for the artificial 

neural network output.
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Comparison RSM-ANN

Using RMSE, SSE, HYBRID, MPSD, SAE, MSE,

R2, AAD, ARE, and X2 (Equations 4–11) were used

to evaluate the performance and choose the

optimum modeling approach for expecting output

responses.

The chi-square  =  
𝑞𝑒−𝑞𝑒(𝑐𝑎𝑙𝑐)

2

𝑞𝑒
[4]

The RMSE=
1

𝑛
σ𝑖=1
𝑛 𝑞𝑒−𝑞𝑒(𝑐𝑎𝑙𝑐)

2

𝑞𝑒
[5]

The ARE =       σ𝑖=1
𝑛 𝑞𝑒 − 𝑞𝑒(𝑐𝑎𝑙𝑐)

2
[6]

The SAE =  σ𝑖=1
𝑛 [ 𝑞𝑒 − 𝑞𝑒(𝑐𝑎𝑙𝑐) ] [7]

The HYBRID =  

1

𝑛−𝑞
σ𝑖=1
𝑛 𝑞𝑒−𝑞𝑒(𝑐𝑎𝑙𝑐)

2

𝑞𝑒
𝑥100

[8]

The SSE =    
100

𝑛
σ𝑖=1
𝑛 [

𝑞𝑒−𝑞𝑒(𝑐𝑎𝑙𝑐)
𝑖

𝑞𝑒
] [9]

The MSE  =     
1

𝑛
σ𝑖=1
𝑛 𝑞𝑒 − 𝑞𝑒(𝑐𝑎𝑙𝑐)

2
[10]

MPSD = 100
1

𝑛 − 𝑞


𝑖=1

𝑛
𝑞𝑒 − 𝑞𝑒(𝑐𝑎𝑙𝑐)

2

𝑞𝑒
𝑖 [11]

Table 5 displays the linear error function for the

Response surface method and Artificial neural

network. The lowest possible error functions

represent the best fits. Due to its lower error

function values, the RSM model is preferable to the

ANN model. It may be a result of the fact that the

current study only used a few experimental runs. The

ANN often needs numerous data points to function

Table 5.  Error functions for ANN and RSM

Error function ANN RSM

X2 0.008 0.001

ADD 0.006 0.004

MSE 0.0002 0.0001

ARE 2.982 2.543

HYBRID 0.0035 0.0012

R2 0.993 0.997

SAE 0.096 0.094

SSE 0.138 0.121

MPSD 0.538 0.413

RMSE 0.0011 0.0005

Figure 10. RSM comparison of expected and actual results

well during network training (Aversano et al., 2021;

Dolatabadi et al., 2018; Franco et al., 2020). The

actual and forecasted data for RSM and ANN are

shown in Fig. 10. As demonstrated in Table 6, The

adsorption of Cd2+ from the produced composite

was accurately predicted by the RSM model. The

RSM was used to optimize the Cd2+ adsorption on

nanocomposites.

Y1 Y2 Y3 Y4 qe(calc) RSM qe (calc) ANN qe(calc)

3.71 294 16.01 15.70 340.23 340.96 338.63

5.09 265 13.15 12.14 320.35 320.53 319.36

3.96 162 11.39 10.65 311.08 310.98 312.04

4.52 244 19.63 15.62 388.78 388.70 389.96

Table 6

Cd2+ removal using

ANN and RSM

techniques, actual and

predicted values
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Numerical Optimization Centrale Composite

Design (RSM)

Table 7 concisely summarizes the ideal

circumstances for Cd2+ adsorption on the

nanocomposites. The ideal conditions resulted in an

experimental adsorption capacity of 440.01 mg/g.

440.05 mg/g was found to be the adsorption

capacity, which aligns with the forecast. A developed

model is considered satisfactory when the target

value is close to 1. The model is frequently used and

desired, as shown by the value 1.

Table 7. The optimal predicted condition for the highest Cd2+ adsorption on 

the composite.

Y1 Y2 Y3 Y4

qe adsorption 

capacity
Desirability

5.64 315 16.93 333.96 440.01 0.999

4.94 354 17.48 320.23 440.05 0.999

Isotherm and kinetics of Cd2+adsorption

Adsorption isotherms define the interaction and

maximum adsorption capacity of adsorbate and

adsorbent. Experimental data is fitted to Dubinin-

Radushkevich, Temkin, Langmuir, and Freundlich

isotherm models to perform equilibrium

investigations (Kabuba & Banza, 2020). The fitted

model was verified using error functions (X2) and

regression analysis (R2). Table 8 displays the findings.

As can be shown, the Langmuir model has the

lowest error function (0.011) and most significant

correlation coefficients (R2 > 0.995). This means

that the Langmuir model is suitable, as shown by

this result. Compared to the Freundlich, D-R, and

Temkin isotherm models, it can be regarded as the

most accurate technique to characterize the Cd2+

adsorption process on the nanocomposites. The

Cd2+ was adsorbed onto the composite in a single-

layered way, and the active sites on the material's

Table 8.  Cd2+ adsorption onto composite under RSM-optimized conditions, regression coefficients, kinetic parameters, and isotherm model.

Models Formula Variables values X2

Langmuir Cfinal

qe
= 

Cfinal

qm
+

1

Cqm

R2

qma(mg/g)

C (Lmg-1)

0.997

438.02

0.821

0.009

Temkin qe = X ln Cfinal +Ktem R2

Ktem

X

0.823

310.63

8.235

0.035

Freundlich Log qex= log Kfreud+ 
1

𝑛
log Cfinal

R2

Kf (Lmg-1)

n

0.954

299.25

6.149

0.049

Dubini-Radushkevich ln qex = ln qmaximum – bA2

A= RT ln(1 +
1

𝐶𝑒𝑞
)

R2

E (Kj.mol-1)

b  (mol2j2)

816.715

0.875

2.366.10-9

0.039

Pseudo first-order Log (qex-qtm) = log qex−
𝐾first

2.3
𝑡 R2

Kfirst (min-1)

qex (mg/g)

0.972

0.0279

258.962

0.025

Pseudo second-order 𝑡

𝑞𝑡
=

1

𝐾𝑆𝑞𝑒𝑥
2 +

1

𝑞𝑒𝑥
𝑡

R2

qex(mg/g)

KS (g/mg.min-1)

0.997

376.325

0.157

0.013

Elovich qt = 
1

𝐷
ln aD+ 

1

𝐷
ln t R2

a(g/mg.min-1)

D (g/mg)

0.989

0.025

9.521

0.062

Intraparticle diffusion qt = Kdiffusion t0.5+E R2

E

K(g/mg.min1/2)

0.923

0.018

2.185

0.037
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adsorbent interface were equally distributed, as

suggested by the Langmuir isotherm model. The

physical and chemical characteristics of the reaction

may be predicted using the mean adsorption energy,

E. Physical adsorption happens when E is less than

8 kJ mol-1; chemical adsorption happens when E is

between 8 and 16 kJ mol-1; and chemical adsorption

happens when E is larger than 20 kJ mol-1. The

Cd2+ adsorption onto the adsorbent is a

chemisorption process because E was greater than 8

kJ mol-1, according to the Dubini-Radushkevich

model.

In order to fit and correlate the results of the

experiments, pseudo-first-order and pseudo-second-

order kinetic approaches were employed. To explore

the mass transfer rate and mechanism of the

adsorption process together with Elovich

intraparticle diffusion. The lower agreement between

qe (actual) and qe (predicted), as well as the higher

correlation coefficient (R2 > 0.997), indicate the

pseudo-second-order model's capability to explain

the experimental findings. Then, an intraparticle

diffusion model built on the Weber and Morris

theories was used to assess the kinetic findings.

According to the Morris hypothesis, an adsorption

process is exclusively governed by intraparticle

diffusion, as seen by a qt vs. t0.5 linear line with an A

= 0 slope. The rate is influenced by more than only

pore diffusion and adsorption. The C values describe

the thickness of the boundary layer. The intercept (B

value) increases with increasing border size. The

maximum Cd2+ adsorption ability of composite and

various adsorbing materials is evaluated in Table 9.

The composite showed high and satisfactory ability

to remove Cd2+ from the aqueous medium

compared to standard sorbents.

Sorbent qmax (mg/g) Reference 

Modified CNCs Amino 135.06 (Azad et al., 2021)

CNCs with succinic acid                                 250.07 (Igberase et al., 2014)

Chitosan 144.01 (Chen et al., 2019)

Nanocomposites 52.80 (Oyewo et al., 2019)

Cellulose modified 400.01 (Oyewo et al., 2019)

Composite 438.02 This research 

Table 9

Adsorbent capacity comparison

The investigation of binding capacity

According to a mechanistic investigation, the

composite has more active adsorption sites and a

greater capacity for adsorption. Quantum chemical

modeling was used to determine better The most

effective place for adsorption, and the energy of

attraction between the adsorption materials and

Cd2+ should be identified. By employing glucose as

the fundamental building block, cellulose was made

simpler. Three kinds of cellulose modified with

distinct functional groups were constrained to study

Matrix HOMO Eg LUMO Eg Eg Kcal.mol-1 E Kcal.mol-1

CNC -0.240 -0.298 47.8 -67.3

R-COOH—CNC -0.233 -0.298 46.7 -72.2

CO-NH—CNC -0.214 -0.298 59.1 -80.7

and compare their contributions. Table 10 displays

energy information as well as stability Cd2+

adsorption configurations on the material. The

ability of the adsorbent to bind Cd2+ increases as the

absolute quantity of binding energy rises. The order

of the bond capacity was CNCs, carboxyl-CNCs,

and Amide-CNCs. The cellulose nanocrystals-amide

demonstrated the strongest capacity to bind

compared to the unprocessed CNCs. The most

effective adsorbents for binding have more than one

functional group change. It was caused by the solid

Table 10

The Energy differences and

the bonding force between

the adsorbent material and

Cd2+.
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capacity of the N soliton to donate electrons (Wang

et al., 2021).

In the nanocomposite, the functional groups are

crucial for synergistic adsorption. The adsorbent

may be considered chemisorbing during the electron

transition between the LUMO and HOMO of Cd2+.

Table 10 displays the HOMO consisting of multiple

cellulose adsorption agents modified with chemical

groups, the LUMO, and the energy differential

between the absorbent material and the Cd2+. The

probability of a spontaneous electronic transition

occurring rises as the energy gap widens, and the

adsorbent utilized has a larger adsorption capacity.

The difference in energy was largest in the

multifunctionally improved CNCs, which may have

been caused by the breakdown between H and CO-

NH from the cellulose and chitosan, which opened

up more active locations for adsorption and

increased the adsorbent's ability to attract Cd2+.

Conclusions

The efficiency of the composite in removing Cd2+

from wastewater and the impact of operational

parameters on the adsorption capacity in a batch

process was assessed using the response surface

method and artificial neural network. The results

showed that nanocomposites were more thermally

stable than CNCs and chitosan, and FTIR analysis

confirmed that the composites' functional groups

were equivalent to those of CNCs and chitosan. The

nanocomposites' SEM pictures revealed a porous

structure, thin particle size, and needle-like shape.

These results showed that the nanocomposites could

filter out metal ions from wastewater. The

interactions of the process variables and their

optimal conditions were studied. The adsorption

capacity of 440.01 mg/g was found to be optimum

with a pH of 5.65, starting concentration of 333

mg/L, contact duration of 315 minutes, and dosage

adsorbent of 16.93 mg. According to validation

information, the outcomes of two approaches, ANN

and RSM suggested that RSM with R2 of 0.997 and

ANN with R2 of 0.993 are reliable and exact

techniques for predicting the adsorption process.

The Freundlich and Temkin isotherms did not

correspond to the equilibrium data, as well as the

Langmuir isotherm. According to the D-R model,

the energy required for Cd2+ adsorption is larger

than 8 kJ mol-1, suggesting that chemisorption is the

mechanism involved. The adsorption kinetics were

properly predicted using the pseudo-second-order

rate model. A multifunctional grafted cellulose

nanocrystals derivative adsorbent (nanocomposites)

with carboxyl, amide, and secondary amino groups

was successfully created for Cd2+ removal.

Additionally, the functional groups cooperate to

allow Cd2+ to bind to the nanocomposites.

Abbreviation 

ANN: Artificial neural network.

CNCs: Cellulose nanocrystals

CCD: Central Composite Design

D-R: Dubini-Radushkevich

RSM: Response Surface Methodology

RMSE: Root means square errors

SSE: sum squared errors

HYBRID: Hybrid fractional error function

MPSD: Derivative of Marquardt’s percent standard 

deviation

SAE: sum absolute errors

MSE: Mean square errors

X2: Chi-square

AAD: Absolute average deviation

ARE: Average relative errors

HOMO: Highest occupied molecular orbital

LUMO: Lowest occupied molecular orbital
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