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Abstract

Flue Gas Desulfurization (FGD) is pivotal in reducing Sulfur Dioxide (SO2) concentrations through

neutralization. This study explored dry FGD modeling using Artificial Neural Networks (ANN) and Adaptive

Neuro-Fuzzy Inference Systems (ANFIS). The independent parameters used were diatomite to Ca(OH)2 ratio,

hydration time, hydration temperature, SO2 concentration, and sulfation temperature, while the output

responses incorporated were sulfation efficiency (𝑌1) and sorbent conversion (𝑌2). ANN simulations employed

the Levenberg-Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG) algorithms

with 7 to 10 hidden cells. The sigmoid and linear functions served as trigger mechanisms. ANFIS models,

utilizing grid partitioning and subtractive clustering, were trained with hybrid and backpropagation methods.

Seven ANFIS membership functions were compared for the best-fit model. The computing models were

critiqued using RMSE, MSE, and R2 statistical metrics. Numerical error analysis favored the ANN program,

with BR exhibiting the highest R2 values (0.9987 for 𝑌1, 0.9986 for 𝑌2). However, the SCG algorithm emerged as

the most dependable model due to its lowest RMSE and MSE values. In contrast, the ANFIS model

demonstrated inferior R2 values and forecasting capabilities. This investigation provided nuanced insights into

dry FGD modeling, elucidating the interplay between computational methodologies and process parameters.
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Introduction

The presence of SO2 in the atmosphere can cause a

significant shift in the climate, with episodes of rapid

cooling spanning years or global warming following

high gas releases. Coal-fired power facilities are

primary anthropogenic sources of air pollution. Sulfur

dioxide, one of the criteria pollutants, contributes to

human health problems, such as asthma and heart

attacks (Manisalidis et al. 2020; Heaviside et al. 2021).

A considerable quantity of this gas reduces the ability

of the atmosphere to filter itself owing to the reduced.

concentration of the hydroxide radical (OH), which

is used to convert SO2 to sulfuric acid. This translates

to elevated levels of other gas pollutants and the

formation of acid rain (Fatima et al. 2020). Dry flue

gas desulfurization (DFGD) is a retrofit SO2 capture

system that can be easily integrated by power plants

with no emission control technologies (Carpenter

2012; Li et al. 2022). Scaling laboratory experiments

to pilot plants or fully operational units necessitates a

profound comprehension of the desired outcomes,

including scrubbing efficiencies and reagent.
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conversion. Mathematical computations, such as

computational fluid dynamics (CFD), have been

immensely leveraged in modeling studies to optimize

reaction variables in the neutralization process.

(Tryggvason 2016; Bhatti et al. 2020; Lerotholi et al.

2022). Soft computing technologies can be employed

as alternate techniques for prediction processes in

desulfurization units. Artificial neural networks

(ANN) are software systems composed of layered

structures (input, hidden, and output layers) designed

to mimic the learning and comprehension abilities of

the human brain. (Roy et al. 2021; Jakšić et al. 2023).

Mathematical equations and algorithms are used to

analyze the relationship between data sets and

generate accurate models and forecasted results.

Each algorithm offers distinct benefits in terms of

system memory and training time. The predicted data

is evaluated by assessing errors and regression values

to validate the correlation between atomic data and

the synthetic values. An adaptive neuro-fuzzy

inference system (ANFIS) is a hybrid method that

syndicates the programming platforms of neural

networks (NN) and fuzzy inference systems (FIS).

The prediction capability of the system is achieved

through thorough training of the ANN and the

logical reasoning ability of the FIS (Chopra et al.

2021). This symbiotic networking reduces forecasting

errors by optimizing hidden layer identification, a

problem associated with ANN during metadata

transmission. The backpropagation algorithm and the

least squares approach are employed in the coding of

input data. This system is subject to a set of IF-

THEN rules developed by Takagi and Sugeno

(TSK), each assigned a membership function (MF).

This work aimed to model and analyze dry flue gas

desulfurization utilizing ANN and ANFIS. The

performance of both simulation techniques was

assessed and contrasted in terms of statistically

significant non-linear error functions that measure the

error distribution. However, most dry flue gas

desulfurization research focuses on the one-factor-at-

a-time procedure (OFAT). This experimental design

requires a long time to evaluate. It cannot be used to

predict the desired optimal adsorption efficiency as a

series of contact between process variables. To the

best of the authors' knowledge, there has been no

comparative investigation on dry flue gas

desulfurization using complex modeling methods

such as FIS and NN. There is a dearth of literature on

machine learning applications in the DFGD process,.

as most researchers have focused on mature wet and

semi-dry technologies (Guo et al. 2019; Fu et al.

2019; Kong et al. 2020). Consequently, our study is

focused on bridging this disparity.

Materials and methods

Data mining

The data modeled in this study was gathered from a

prior research analysis conducted on a fixed-bed

desulfurization system (Figure 1) using an activated

Ca(OH)2-diatomite sorbent. (Makomere et al. 2023c).

The experimental design utilized a central composite

design from the Design-Expert v13.0.5.0 program,

creating 50 datasets. The input variables (Table 1)

were divided into five coded elements based on a star

point distance of α=2 (alpha level 2). The factors

considered entail the diatomite to Ca(OH)2 ratio (A),

the hydration time (B), the hydration temperature (C),

the inlet SO2 concentration (D), and the sulfation

temperature (E). The output responses involved in

assessing the impact of each input parameter were

sulfation efficiency (𝑌1) and reagent conversion (𝑌2).

The sulfation process that occurred, equation [1], can

be described as an irreversible ion-exchange reaction

involving the acidic SO2 gas and the alkaline Ca(OH)2

sorbent. The consumed sorbent was transformed into

a dry salt, primarily made up of calcium sulfite

(CaSO3). The effluent gas was analyzed using a Testo-

340 combustion flue gas analyzer and discarded

through a fume chamber. The percentage reagent

utilization (𝑌2) can be calculated quantitatively using

the SO2 removal efficiency (𝑌1) as shown in equations

[1] , [2] and [3].

Ca (OH)2(s) + SO2(g) → CaSO3(s) + H2O(g) [1]

ηdesox (%) = (1 -
Cout

) x 100 [2]
Cin

ηCa = ηdesox *
S

[3]
Ca

where 𝜂𝑑𝑒𝑠𝑜𝑥 % is the percentage sulfur removal

efficiency, 𝐶𝑜𝑢𝑡 represents the outlet SO2 concen-

tration, 𝐶𝑖𝑛 is the feed SO2 concentration, 𝜂𝐶𝑎 is the

amount of calcium utilized, 𝑆 and 𝐶𝑎 are the molar

quantities of sulfur and calcium, respectively (Mako-

mere et al., 2023c).
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The input data was pre-processed using the min-max

linear transformation, which scales the values to a

range of 0 to 1, as shown in equation [4]. This process

is crucial for creating dimensionless input variables

that have reduced noise and outliers caused by varia-

tions in magnitude.

This necessitates the execution of optimal training for

the ANN. The synthetic data was denormalized,

equation [5], for comparison with the actual value.

zi =
[xi – min (x)]

[4]
[max (x) - min (x)]

xi = [zi * (max – min)]                          [5]

where 𝑧𝑖 represents the normalized ith value, 𝑥𝑖 is the

ith value in the input data, 𝑚𝑖𝑛 𝑥 is the lowest value

and 𝑚𝑎𝑥 𝑥 is the maximum value in the dataset

(Eesa and Arabo 2017; Makomere et al., 2023a).

Figure 1 

Experimental 

setup

Code Experimental variable Range

Inputs

A Diatomite to Ca(OH)2 0-1

B Hydration time (hours) 3-7

C Hydration temperature (°C) 50-90

D Inlet SO2 concentration (ppm) 500-2500-

E Sulfation temperature (°C) 120-160

Responses

𝑌1 SO2 removal (%) 5-54

𝑌2 Reagent conversion (%) 4-42

Table 1. The scope of feed data used in ANN and ANFIS models.

Artificial neural network (ANN) framework

The fitting tool (nftool) was executed in MATLAB

R2023a to perform simulations using either the

Levenberg-Marquardt (LMANN), Bayesian

Regularization (BRANN), and Scaled Conjugate

Gradient (SCGANN) backpropagation algorithms.

For comparison purposes, each algorithm utilized an

ANN design consisting of 5 input cells, 7 to 10

hidden cells, and 2 output cells (Figure 2). The

selected database (Table 1) was divided into training

(30), validation (10), and testing (10) using the divide-

rand ANN function. The feedforward process invol-

ved transmitting information to the hidden layer after

the input nodes were activated. This allowed for the

computation of a potential correlation between the

input and response parameters. Nonlinear (tansig and

logsig) and linear (purelin) trigger functions were

compared as hidden layer activators. The total output

was recalibrated through synaptic weight mutation to

minimize the distance between the experimental and

the predicted ANN values (backpropagation). This

process transcends to training termination when

sufficient generalization is attained. Occasional initia-

lizing and reverting of the weights post-training were

attempted to optimize output results. Retraining the

network was limited to ten actions as it was discove-

red that the network performed poorly afterward.

Figure 2. A sample 5-10-2 ANN architecture.

Adaptive neuro-fuzzy inference system (ANFIS) 

design

The fuzzy logic designer was also developed using the
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MATLAB R2023a program. The ANFIS prompt

(>>fuzzy) was computed on the MATLAB window

to initiate the Sugeno-type fuzzy inference system

(FIS). Five input variables were used as feed data, and

only one output variable was selected for model

evaluation at a time (Figure 3). The information was

sectioned into training (35) and testing (15) for

programming. Input membership functions used to

translate the input variables were triangular (trimf),

trapezoidal (trapmf), generalized bell-shaped

(gbellmf), Gaussian (gaussmf), Gaussian combination

(gauss2mf), pi-shaped (pimf), and the difference

between two sigmoidal (dsigmf) functions. The

constant type of MF analyzed the target responses

when generating the network. The hybrid and

backpropagation algorithms were compared as

optimization methods at 100 dataset passes at a given

time (epochs). The system error was set to converge

near zero. The network output was examined by

utilizing the training and testing loss function (RMSE)

to assess the level of concordance between the

observed and predicted data. To generate the FIS

model, grid partitioning-GP (genfis1) and subtractive

clustering-SC (genfis2) were reviewed for correlation

preeminence. The genfis2 model was established at a

0.5 range of influence, a squash factor of 1.25, an

accept ratio of 0.5, and a reject ratio of 0.15. The

>>evalfis (Output, dataOutput) code was utilized to

generate projected data points for comparison with

the ANN and empirical values.

Figure 3. Generic Sugeno FIS layout

Model analysis

The evaluation of the ANN and ANFIS outcomes to

determine the model with better performance relied

on a high coefficient of determination (R2) value, as

well as lower values for root mean square error

(RMSE) and mean square error (MSE). R2 quantifies

the degree of association between the developed

model and the dependent variable using a scale ran-

ging from 0 to 100% (Chicco et al. 2021). It is nume-

rically expressed as shown in equation [6].

𝑅2 =
σ𝑖=1
𝑁 𝐷𝑝 − 𝐷𝑒

σ𝑖=1
𝑁 𝐷𝑝 − 𝐷𝑒𝑚

2
[6]

The RMSE and MSE statistical methods serve to

perform data evaluation. In soft computing, MSE acts

as a loss function indicator to quantify the

effectiveness of a training algorithm and detect

outliers (Badillo et al. 2020). The squared region

ensures a detailed error calculation by adding more

weight to these values. Small numbers indicate

minimal disparity between the model data and the

actual data, therefore allowing for the model to be

applied in other domains. The RMSE is a square root

of the MSE and is used to assess the suitability of a

model for future trend analysis (Chai and Draxler

2014; Makomere et al. 2023b). RMSE and MSE can

be calculated as defined in equations [7] and [8],

respectively (Septiarini and Musikasuwan 2018).

𝑅𝑀𝑆𝐸 =
1

𝑁


𝑖=1

𝑁

𝐷𝑒 − 𝐷𝑝
2

𝑀𝑆𝐸 =
1

𝑁


𝑖=1

𝑁

𝐷𝑒 − 𝐷𝑝
2 [8]

[7]

where 𝑁 is the CCD experimental runs, 𝐷𝑒𝑚
represents the average mean of the actual data, 𝐷𝑝 is

the predicted value and 𝐷𝑒 is the actual value.

Results and discussion

Neural Network performance evaluation

From Figures 4a to 6a, training performance revolves

around the comprehensive 'all' R2 values. Notably, the

BR script slightly outperforms LM and SCG,

achieving a correlation coefficient square of 0.9973.

This superiority is ascribed to the strategic adaptability

of the BR programming to haphazard data, mitigating

network overfitting (Jazayeri et al. 2016). Validation

checks were absent (Figure 5) in the BRANN

algorithm, thereby maximizing data for training

activities. The LM tool secured the second position

with an R2 of 0.98491, while SCG exhibited the lowest

value of 0.9761. Both LM and SCG scripts implement

validation checks to curb overfitting. The SCG

algorithm consistently produces lower MSE values

R.S. Makomere, H. Rutto, A. Alugongo, L. Koech
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than BR and LM, contributing to optimal network

generalization and heightened accuracy (Lungu et al.

2016). From Figures 4b to 6b, the flattening of the

training curve (blue line) for all algorithms as MSE

converges towards zero indicated a minimized loss

function and a well-trained network. Table 2

illustrated activation function outcomes in which

purelin had the lowest simulation performance due to

linear metadata articulation, while the nonlinear

sigmoid functions (logsig, tansig) produced R2 values

greater than 90%.

Both sigmoidal functions were proficiently adapted to

unstructured datasets. A 10-hidden-cell ANN system

improved data classification, particularly with sigmoid

transfer functions and the purelin SCGANN. The

Purelin trigger mechanism had no discernible trend on

LM and BR algorithms while varying the hidden cells.

Overall, the 5-10-2 configuration of the BR tool

performs well, with an R2 of 0.9973 and an MSE of

0.023.

Figure 4. LM (a) regression and (b) performance plots.

(a)

(b)

Figure 5. BR (a) regression and (b) performance plots

(a)

(b)
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Figure 6. SCG (a) regression and (b) performance plots.

(b)

(a)

Function Hidden 

layer 

nodes

LM BR SCG

R2 MSE R2 MSE R2 MSE

Tansig

5-7-2 0.9698 0.234 0.9891 0.01 0.93424 0.00360

5-8-2 0.9742 0.108 0.9787 0.101 0.96519 0.00269

5-9-2 0.9390 0.028 0.9824 0.085 0.93416 0.00626

5-10-2 0.9849 0.134 0.9973 0.023 0.98393 0.000954

Purelin

5-7-2 0.7480 66.4 0.7523 53.54 0.72963 0.0358

5-8-2 0.7491 53.5376 0.7469 168.5 0.72563 0.0360

5-9-2 0.7432 57.2 0.7454 60.6 0.73054 0.0240

5-10-2 0.7433 56.6 0.7457 64.0 0.73173 0.0254

Logsig

5-7-2 0.9657 0.213 0.9902 0.180 0.95152 0.00335

5-8-2 0.9790 0.212 0.9826 0.0948 0.94511 0.00598

5-9-2 0.9812 0.107 0.9905 0.0964 0.96061 0.00264

5-10-2 0.9831 0.182 0.9925 0.0022 0.96184 0.00368

Table 2 

Neural network 

models with 

different activation 

functions and 

hidden neurons

ANFIS performance evaluation

The genfis1 and genfis2 FIS were trained with 5

input MFs (3 × 3 × 3 × 3 × 3 for GP and 16 ×
16 × 16 × 16 × 16 for SC) and 1 output MF. The

grid partition model deployed 243 'IF-THEN' rules

to compute and evaluate the estimated output,

whereas the subtractive clustering model produced

16 rules. From Table 3, higher R2 values were reali-

zed when the ANFIS model was optimized using

the backpropagation (BP) method (0.8988-genfis1

and 0.8648-genfis2). The pi-shaped MF (pimf) in the

backpropagation system developed a model that

surpassed other models in forecasting outcomes (R2

= 0.8988). The ANFIS loss function was calculated

using the system RMSE for the training and testing

data sets. Typically, the best deep-learning models

exhibit the lowest RMSE values. According to the

results in Table 3, the hybrid models demonstrated

notably lower error levels throughout the training

phase compared to the testing phase. In contrast,

R.S. Makomere, H. Rutto, A. Alugongo, L. Koech
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Table 3. ANFIS output

the backpropagation method showed a strong corre-

lation between the training and testing error values.

The hybrid results suggested that the network was

overfitting during the training stage. The

optimization of the DFGD process can be observed

via the rule reviewer system in Figure 7, which

analyzed a series of 101 computed plots. At the

specified optimal operating conditions, a sulfation

reaction of 55.3% (Figure 7a) and a utilization

response of 43.2% (Figure 7b) were obtained. These

conditions include a diatomite to Ca(OH)2 ratio of

0.375, a sorbent hydration time of 5 hours, a sorbent

hydration temperature of 75 °C, an inlet gas

concentration of 1500 ppm, and a desulfurization

temperature of 140 °C. The artificial data differed

from the measured values by 5.48% for sulfation and

4.32% for conversion.

Model comparison

The efficiency of the ANN and ANFIS predicting

ability was explored using RMSE, MSE, and R2

empirical comparison. All models achieved

acceptable R2 values emanating from successful

training, learning, and reasoning. From Table 4, an

analysis of the 𝑌1 estimations showed that the BR

script had the strongest feature correlation (R2 =

Method
Optimization 

method

Membership 

function
Training RMSE Testing RMSE R2

genfis1

Hybrid

trimf 2.0539e-06 0.15409 0.8344

trapmf 1.11702e-06 0.22256 0.8429

gaussmf 9.4275e-07 0.19824 0.8057

gauss2mf 2.4686e-06 0.1467 0.8485

gbellmf 1.3919e-06 0.19746 0.7967

dsigmf 1.2887e-06 0.21076 0.8227

pimf 1.03075e-06 0.20288 0.8112

BP

trimf 0.79281 0.12675 0.8735

trapmf 0.067224 0.141174 0.8693

gaussmf 0.054787 0.16939 0.8447

gauss2mf 0.055742 0.13981 0.8832

gbellmf 0.07514 0.13652 0.8693

dsigmf 0.057338 0.13985 0.8802

pimf 0.051008 0.10418 0.8988

genfis2
Hybrid gauss 1.2091e-06 0.18483 0.8547

BP gauss 0.011896 0.17765 0.8648

Figure 7 ANFIS Optimized experimental conditions and responses

for (a) SO2 removal AND (b) sorbent conversion.

(a)

(b)
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(0.4178) and MSE (0.3371), supporting its reliability

in perpetual estimation activities. This is consistent

with an investigation by Baghirli (2015) of LM, BR,

and SCG backpropagation classifiers, in which SCG

produced the lowest mean absolute percentage error

(MAPE) of 3.717 in wind speed projections (Baghirli

2015).

0.9987), followed by LM (0.993) and SCG (0.9498),

with ANFIS at 0.8898. For the 𝑌2 response, LM and

BR attained an R2 value of 0.9986, whereas SCG

obtained the lowest R2 of 0.9472. The fuzzy logic

system, with an R2 of 0.8927, was outperformed by

all ANN models. Table 4 also revealed that SCG had

a higher prediction accuracy from the lower RMSE

Analysis
Sulfation efficiency (%) Sorbent conversion (%)

LM BR SCG ANFIS LM BR SCG ANFIS

RMSE 0.4847 0.4633 0.4178 0.7056 0.44971 0.368223 0.3371 0.5354

MSE 0.2349 0.2146 0.1745 0.4979 0.20299 0.135588 0.1136 0.2867

R2 0.993 0.9987 0.9498 0.8988 0.9986 0.9986 0.9472 0.8927

Table 4. ANN and ANFIS performance comparison.

Figures 8a and 8b provide graphical plots of values

from the network-generated responses (𝑌1 and 𝑌2)

compared to the experimental data at random trial

runs. The ANN systems presented high precision in

forecasting functionality, illustrating that the training

of the network was optimized. The ANFIS model

had strong simulation capability during the initial runs

(1 to 35), which diminished when mapping the testing

data. This may be attributed to a scarcity of feed data,

which hinders the ability to recognize patterns and

effectively develop the desired decision-making

process. (Keskin et al. 2006; Sada and Ikpeseni 2021).

A comprehensive modeling study on hybrid

algorithm data interpretation is underway to

understand this problem and develop viable

solutions.

Figure 8. Experimental vs synthetic data for (a) sulfation efficiency and (b) sorbent conversion

Conclusion

Artificial intelligence (AI) is beneficial for com-

prehending continuous data systems and scientific

processes, particularly in the domain of dry flue gas

desulfurization (DFGD). This study used deep lear-

ning platforms to develop two prediction models,

specifically artificial neural networks (ANN) and

adaptive neuron-fuzzy inference systems (ANFIS).

These networks were trained using various

techniques to simulate SO2 removal and sorbent

consumption. The study confirmed the efficiency of
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neural networks and fuzzy frameworks in DFGD

adsorption measurements, with both models

matching real data. BRANN had a higher correlation,

whereas SCGANN generated lower error levels. The

hyperbolic tangent activation function, in tandem

with the 10 hidden node ANN design, produced

ideal results. Conversely, the ANFIS system exhibited

poor accuracy due to limited data, leading to inferior

prediction. The hybrid method, which incorporated

the grid partitioning ANFIS and pimf, produced

desirable results for the fuzzy logic classifier. In

general, the comparison of models showed that the

ANN exhibited higher reliability and consistency in

the analysis of DFGD.
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