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Abstract

One primary application of algae is in the production of biodiesel; however, they can also be employed as a

means of removing carbon dioxide from biogas. Algae have recently attracted a lot of attention due to these

advantages. Reducing carbon dioxide and possibly hydrogen sulfide concentrations improve biogas quality

significantly. Because biogas is created as a mixture of methane gas and a significant amount of carbon dioxide,

it needs to be cleaned (scrubbed) to create usable, ultra-pure biomethane. Algae offer a more environmentally

friendly way to extract carbon dioxide from biogas and utilize it for photosynthesis whilst yielding itself for

production of biodiesel. Algal culture systems for upgrading biogas present a viable substitute to traditional

physical and/or chemical upgrading methods, as they are safer, more affordable, and less harmful to the

environment hence contributing to a more sustainable circular economy. To completely explore the enormous

potential of growing algae to capture carbon dioxide, more study is necessary. This review's objective is to

present fact-based knowledge regarding algae's capacity to absorb carbon dioxide from biogas.
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Introduction

The photosynthetic capacity of algae is used in biogas

scrubbing to eliminate contaminants from biogas,

principally carbon dioxide (CO2) and hydrogen sulfide

(H2S). This leaves behind a biogas that has been

substantially cleansed and is mostly made up of bio-

methane (Das et al., 2022). A mixture of methane

(50–75%), carbon dioxide (25–50%), trace amounts

of nitrogen (2–8%), and other gases, such as water

vapor, hydrogen sulfide, halogenated hydrocarbons,

siloxanes, ammonia, and oxygen, are typically found

in the biogas that is produced (Ramaraj and Dussadee

2015, Li et al., 2019). Biogas is synthesized by metha-

nogens in an anaerobic decomposition of organic

feedstocks, such as sewage, or manure or a combi-

nation of both in biodigester containers. As long as

the primary components of any biomass are cellulose,

hemicelluloses, proteins, fats, and carbohydrates, it

can be utilized as a substrate for the production of

biogas. However, biogas upgrading is the process

whereby CO2 and other impurities constituent in the

produced biogas, are removed (or scrubbed) in order

to yield higher volumes of biomethane (Deng et al., -

.
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2020, Angelidaki et al., 2018). Bio-methane is typically

made up of 95–99% CH4, 1–6% CO2 and 0.02–0.05%

H2S (Golmakani et al., 2022). Biogas upgrading is

crucial for three main reasons. Firstly, impurities

cause problems for the natural gas grid, appliances,

and end users. Secondly, the removal of impurities

raises the upgraded biomethane's calorific value,

which lowers the treated biogas's density and satisfies

the Wobble index, which is determined by dividing

the volumetric lower calorific value by the square root

of the gaseous fuel's relative density (Lyczko et al,

2017, Papurello et al., 2019). Lastly, when carbon

dioxide is present, it makes it difficult to compress or

liquefy bio-methane, for storage, transportation, and

distribution in pressurized containers. Upgraded

biomethane is a better source than natural gas (Awe

et al., 2017). Biogas can be upgraded and purified in a

variety of ways. Physiochemical technologies that

require large amounts of energy and chemicals, like

chemical scrubbing, condensation, catalytic conver-

sion, membrane separation, and adsorption, have a

negative impact on the process's sustainability from

both an economic and environ-mental standpoint

(Oruganti et al., 2023). The increasing need for energy

and the usage of chemicals in various purification

processes have made biological approaches a more

attractive and superior substitute because they are

more environmentally friendly (Atelge et al., 2021).

Biological techniques involve the use of microbial

consortia capable of consuming the present impurities

and upgrading the biogas (Oruganti et al., 2023).

Employing CO2 contained in biogas as source of

carbon for growth of micro-algae will lead to lower

operational cost, thereby, yielding a biogas with finer

methane content at cheaper costs.

CO2 removal using photosynthetic biogas 

upgrade technique

The biogas to be upgraded is directly introduced into

the reactor. Inside the reactor, photoautotrophic mi-

croorganisms consume the CO2 in a carbon fixation

cycle that produces glucose. This process can consu-

me most of the CO2 leaving about 2-6% CO2 in the

biogas, significantly enhancing the percentage of bio-

methane. Common performers of this activity include

Spirulina sp., Chlorella sp. and Arthrospira sp. (Munoz et

al., 2015). Xia et al. (2015) described a two-way

system of indirectly upgrading biogas as show in

Figure 1, where direct and indirect biogas upgrade

process technique was used with micro-algae. A car-

bonate solution traps CO2 from the biogas in a bicar-

Figure 1. The schematic flow chart of direct and indirect biogas

upgrade system using microalgae (Culled from Xia et al., 2015)

bonate form and the carbonate solution is regene-

rated (Xia et al., 2015). Microalgae produce biomass

at low operating costs and have an amazing capacity

to fix CO2 (Ighalo et al., 2022). Microalgae were used

by Posadas et al. to upgrade biogas and remove nu-

trients from a digester in an outdoor high-rate algal

pond simultaneously. The potential of micro-algae as

biological carbon fixers to aid in the growth of a

circular economy and environmentally friendly coal-

fired power plants was investigated by Yahya et al.

(2020). Dasan et al. (2020) increased Chlorella vulgaris's

CO2 fixation efficiency by optimizing critical culture

parameters like pH and temperature.. Premaratne et

al. (2021) assessed Desmodesmus sp.'s capacity to store

CO2 in flue gas under nitrogen element limitation

conditions, and they used the biomass that was

produced to prepare biofuel. According to Ding et al.

(2020)), employing native microalgae species is a

successful way to lower industrial CO2 emissions and

effluents from palm oil mills. Microalgae are an

excellent option for carbon capture, which can also be

applied to the manufacturing of biofuels, the treat-

ment of wastewater, and other sectors of the econo-

my. This is explained further in Table 1 where several

carbon capture technologies are itemized and

compared based on their benefits and limitations.

Algal biomass can be used to produce a wide range of

useful products. Thus, using biogas as a carbon

source for algae cultivation has many benefits and is

very promising for long-term algal scrub systems.

Furthermore, the ability to remove CO2 from biogas

could make it a carbon neutral energy source, assisting

in the control of worldwide anthropogenic CO2

emissions, depending on the technologies employed

(Golmakani et al., 2022).

Algae in agriculture

Mostly aquatic, photosynthetic, and nucleus-bearing,
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algae are an order of organisms without true roots,

stems, leaves, or specialized multicellular reproductive

structures found in plants. Algae include seaweed,

giant kelp, and pond scum (Andersen and Lewin,

2023). There are seven main types of algae, each with

unique sizes, purposes, and colors. The divisions are

as follows: Xanthophyta (yellow-green algae),

Rhodophyta (red algae), Phaeophyta (brown algae),

Pyrrophyta (fire algae), Chrysophyta (golden-brown

algae and diatoms), and Euglenophyta (euglenoids)

(Meeranayak, 2020). Micro-algae can manufacture ex-

Technique Details of the Technique Advantages Limitations Reference

Scrubbing using 

high pressure 

water 

Scrubbing using 

Chemical 

Organic physical 

scrubbing

CO2 is absorbed by 

water under increased 

pressure conditions.

Amine solution is used 

to absorb CO2.

CO2 is absorbed by 

Polyethylene glycol.

Environmentally safer 

as a substitute for 

hazardous solvents. 

Thermally stable. High 

solubility of CO2

Evaporation causes 

high loss of solvent. 

Equipment corrosion 

and cost intensive.

Ramaj and 

Dussadee, 2015,

Starr et al., 2012, 

Ziobrowski et al., 

2016.

Pressure Swing 

Adsorption

Activated carbon 

receives highly 

pressurized gas. The CO2

is then released from the 

Carbon once the 

pressure is lowers.

Low waste generation Energy inefficient
Siqueira et al., 2017, 

Bahrun et al, 2022.

Membrane 

separation 

technique

For pressurized biogas to 

pass through it a CO2

selective membrane is 

used.

Increased packing 

density and efficiency 

due to the small 

installation needs.

Cost of membrane is 

high, fouling of 

membrane and high 

membrane surface area 

are needed. 

Lei et al., 2020, 

Pasichnyk et al., 

2023, Singh and 

Dhar, 2019.

Cryogenic method 

of separation

Biogas cools till CO2

transforms to liquid 

making allowance for 

easy differentiation.

CO2 capture efficiency 

is high. 

High energy 

requirement for 

refrigeration. Solidified 

CO2 builds up 

continuously on the 

heat exchanger 

periphery and could be 

removed.

Knapik et al., 2018, 

Song et al., 2019.

Microalgae-based 

carbon capture 

and use.

CO2 Bioconversion into 

biofuels and other viable 

products through 

photosynthetic means.

Highly efficient in a 

wide range of CO2

volumes.

Faster growth rate 

than in plants.

Co-production of 

food, biofuel, feed and 

value-added products, 

contact to a circular 

economy.

Economically 

cumbersome culture 

procedures. Flue gas 

components sensitivity 

(NOx, SOx) 

contamination and 

extreme culture 

conditions as pH, 

temperature, salinity.

Golmakani et al., 

2022

Table 1. shows comparison of various carbon capture technologies

tracellular substances, referred to as plant growth

regulators, which affect the growth of plants. Micro-

algae such as Coccomyxa onubensis have shown

antifungal and antibacterial activities in plants

(Ferreira et al., 2023).

Algae as animal feed-stock

Numerous algae have been noted for having a high

protein content, which makes them valuable for ani-

mal feed (Saadaoui et al., 2021). Significant human

supplements like vitamins, amino acids, proteins, li-
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pids, polyunsaturated fatty acids, carbs, and antioxi-

dants are abundant in algae's nutrient profile, as

reported by multiple studies (Saadaoui et al., 2021,

Barkia et al., 2019; Tibbetts et al., 2015). Global re-

ports have indicated that algae are a promising feed

source for animals. The results of various experi-

ments, including one on chlorella, which was tested

for chick development and demonstrated to be a

nutrient supplement, are encouraging (El-Abd et al.,

2017). There have been reports of several genera

serving as possible feedstock for aquaculture facilities,

including Arthrospera, Tetraselmis, Chlorella, Dunaliella,

Haematococcus, Nannochloropsis, Nitzschia, Navicula,

Amphora, and Crypthecodinium (Viegas et al., 2021).

Algae and Carbon neutrality

The scientific community is becoming increasingly

interested in the necessity of carbon sequestration.

Algae have the capacity to sequester more CO2 than

plants, with record efficiencies ranging from 10 to 50

times higher than those of terrestrial plants (Zhou et

al., 2017, Onyeaka et al., 2021). Algae are able to

absorb carbon dioxide from the air. Significant

sequestration capacities have been reported for

numerous algal species (Paul et al., 2020, Shukla et al.,

2017, Moreira & Pires, 2016). In order to become

carbon neutral, algae can serve as a sustainable carbon

sink (Li et al., 2022, Fu et al., 2022).

Algae as bio-indicator of environment fitness

Growing algae in a variety of soil types may indicate

the fertility and health of the soil (Abinandan et al.,

2019). In agricultural land, the majority of the algae

grow on top of the soil and serve as a sign of conta-

minated soil. Growing on contaminated waterways,

phytoplanktons are a promising class of bio-indicators

(Chandel et al., 2023). When heavy metals, including

cadmium, lead, and mercury, are present in water bo-

dies, they can be rapidly identified by looking for the

growth of Chlamydomonas reinhardtii (Jaiswar and

Chauhan 2017; Zayadan et al., 2020). Due to their

enormous capacity to fix carbon dioxide from atmo-

spheric air or flue gases and transform it into valuable

bioproducts, algae have emerged as a viable scrub for

biogas upgrading in modern times (Musa et al., 2019).

Due to their quicker growth rates and ability to be

cultivated in lakes, the ocean, and unfarmable land,

algae have a number of potential advantages over

higher plants. This includes reducing competition for

food and feed (Ramaraj and Dussadee 2015). Algal

application is generally ackno-wledged as one of the

most effective bioengineering and biological purifica-

tion techniques. This strategy is employed for multi-

ple reasons: in comparison to plants, algae grow at

the fastest rate; (ii) they have little to no effect on the

world's food supply; (iii) they are specific for seque-

stering CO2 without the need for gas separation,

saving over 70% of total costs; (iv) they provide an

excellent means of treating combu-stion gas exhau-

sted with NOx and SOx; and (v) the high value of

algae biomass, which can be used for feed, food,

pharmaceutical chemicals, fertilizer, aquaculture, and

biofuel and so on (Ramaraj and Dussadee 2015). For

example, brown algae are real wonder plants when it

comes to taking up carbon dioxide from the atmo-

sphere. They thus have a significant impact on the

atmosphere and climate because they outcompete

terrestrial forests in this regard. They show that fuco-

idan, an algal mucus, is primarily in charge of this

carbon removal and calculate that brown algae may

be able to extract up to 550 million tons of carbon

dioxide from the atmo-sphere annually (Buck-Wiese,

2022). Figure 2 illustrates the mechanism towards su-

stainnable biological carbon capture via micro-algae.

The capacity of algae for bio-fixation has no negative

environmental effects. Additionally, there are many

Figure 2

Mechanism towards sustainable 

biological carbon capture via 

micro-algae (culled from 

Onyeaka et al., 2021)
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opportunities to improve performance, such as

enhancing the photosynthetic capacities of algae

strains to create a more circular economy, boost

biomass yield, and serve as a source of biomass in and

of themselves (Wilberforce et al., 2019; Alami et al.,

2020; Moreira et al., 2023).

Biological purification using Algae

According to Singh and Dhar (2019), the term "algae"

is commonly used to describe both prokaryotic blue-

green algae called cyanobacteria and eukaryotic forms

such as diatoms, green algae, and red algae. Efficient

photosynthetic ability to obtain inorganic carbon

from even very low atmospheric CO2 concentrations

makes them an attractive bio-system with potential as

a CO2 concentrating mechanism (CCM) (Singh and

Dhar, 2019). The specialized multicellular reproduc-

tive structures found in plants are absent in algae.

Algae and other avascular lower plants, such as lack

of true roots, mosses, liverworts, hornworts and

stems. Depending on their size, they are divided into

two groups: macro-algae (multicellular) and micro-

algae (unicellular). Since most algae need a wet or

damp environment to thrive, they are commonly

found around or within bodies of water (Andersen

and Lewin, 2023). Three kinds of micro-algae are

distinguished by their ability to tolerate CO2: i) groups

are CO2-tolerant; they can tolerate moderate CO2

levels of 5–20%; ii) groups are CO2-sensitive; low

CO2 levels of 2–5% inhibit them; and iii) groups are

extreme CO2-tolerant; they can tolerate very high

CO2 levels of 20–100% (Sadvakasova et al., 2023).

Algae has been proven in several capacities that it has

a wide removal rate of major pollutants in most

environments. Table 2 below shows recent reports on

micro-algae for up-cycling of wastewater and CO2

mitigation. The microalga Chlorella sp. MB-9, a possi-

ble strain that might absorb CO2 for growth, could be

enriched using desulfurized biogas (H2S < 50 ppm)

from the anaerobic digestion of swine wastewater, as

demon-strated by Ramaraj and Dussadee in 2015.

This team produced lipid and increased the amount

of methane in the biogas by using oleaginous micro-

algae to absorb CO2. The capacity of a number of

micro-algae to develop and produce lipid using CO2

in biogas allowed for their identification (Ramaraj and

Micro-algae Source of inoculum Conditions Pollutant elimination %

Botryococcus braunii
Pretreated wastewater from 

manufacturing of seafood 2.0 

%

pH 6.7, Light intensity 49.5μmol 

photon m−2 s−1 with a 16:8 light and 

dark cycle, and temperature of 25 °C

Nitrate 91 %

Leptolyngbya sp. Poultry droppings extract 

24:0 ratio of light and dark cycle, 

temperature of 26 ± 2 °C, light 

intensity 200μmol photon m−2 s−1

COD 94.1 %

Nitrogen 88.1 %

Phosphorus 97.3 %

Chlorella sp.
Effluents got from digesters 

in seafood factory/ CO2 0.03 

%

Light intensity 3000, 16:8 ratio of 

light and dark cycle with temperature 

of 25 °C

Nitrogen 94.6 %

Phosphorus 77.3 %

Chlorella pyrenoidosa
Poultry excreta 25 % in BG-

11 media

Light intensity 700 lx with a ratio of 

9:15 light and dark cycle, 30 ± 1 ℃

temperature

TN 83.2 %

NH3–N 53.1 %

TP 96.1 %

Desmodesmus sp. EJ8-10
Anaerobically-digested (DPE) 

piggery effluents

Light intensity 120 ± 2μmol photon 

m
−2

s
−1

with a 14:10 light and dark 

cycle, 27 ± 1 °C

NH
4+

-N 90 %

TN > 80 %

PO
43-

-P 100 %

Scenedesmus obliquus Cattle wastewater

57μmol photon m
−2

s
−1

of light 

intensity with a 24:0 light and dark 

cycle, 21 °C temperature

COD 65–70 %

NH₄
+

98–99 %

PO
4-3

69–77.5 %

CO2 fixation 327–547 mg/L
-
d

Chlorella vulgaris Municipal wastewater

Temperature of 25 °C, light intensity 

90 ± 5μmol photon m
−2

s
−1

, with a 

14:10 light and dark cycle 

COD 75.3 %

Ammonia 93.4 %

Phosphate 90.5 %

Scenedesmus obliquus Municipal wastewater

Temperature of 24 ±1°C, light 

intensity 90 ± 5μmol photon 

m
−2

s
−1

, with a 14:10 light and dark 

cycle

COD 74.9 %

Ammonia 94.1 %

Phosphate 91.3 %

CO2 bio-fixation rates 

129.82 mg/L
-
d

Table 2. Recent reports on micro-algae for up-cycling of wastewater and CO2 mitigation (Culled from Zabed et al., 2020)
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Dussadee, 2015). Additionally, Nannochloropsis can

utilize CO2 from biogas that is created when tannery

sludge is digested anaerobically. The cultivation of

micro-algae under biogas to extract CO2 and enhance

methane enrichment in the biogas produced results

that de-monstrated a 27% scrubbing efficiency, up

from 30% (Ramaraj and Dussadee 2015). By lowering

improve the efficiency CO2 content and increasing

methane content, microalgae's bio-capture of CO2

can be used to enhance the efficiency of biogas. Ac-

cording to Kao et al., when aerated with desulfurized

biogas (H2S < 50ppm) obtained from the anaerobic

digestion of swine wastewater, Chlorella sp. MB-9 used

carbon dioxide for development. Chen et al., 2020

reported that Chlorella sorokiniana produced 5.45 g/L

of biomass with a protein productivity of 0.27 g/L d

when grown in 50% (v/v) diluted swine wastewater,

demonstrating the efficient removal of pollutants.

Singh et al. (2020) reported that Chlorella pyrenoidosa

efficiently treated 25% diluted poultry wastewater,

producing biomass, carbohydrates, protein, lipid, and

chlorophyll at concentrations of 2.5 g/L, 0.64 g/L,

1.02 g/L, 0.49 g/L, and 20 µg/mL. It's interesting to

remember that Qu et al. (2020) reported on Chlamydo-

monas sp. QWY37's capacity for bioremediation in

non-sterilized, non-diluted swine wastewater. The

micro-algae exhibited a reduction of 81% in chemical

oxygen demand (COD), 96% in total nitrogen (TN),

and roughly 100% in total phosphorus (TP), all while

producing 7 g/L of biomass and 944 mg/L of daily

carbohydrate productivity. Li et al., 2021 treated

anaerobically digested (DPE) piggery effluents with

microalga Desmodesmus sp. EJ8-10. The efficiency of

removal of phosphate, ammonia, and TN were 90%,

>80%, and almost 100%, in that order. The micro-

algae grown in DPE had a final biomass of 0.15 - 0.35

g/L and a lipid content of 19-28%. Cheirsilp et al.

(2022) recently cultivated Haematococcus sp. to value

wastewater from seafood processing. According to

their observations, micro-algae could remove COD,

TP, and TN by 50%, 100%, and 100%, respectively,

with 1.33 g/L of microalgal biomass and 30.81% lipid

content. Scenedesmus obliquus demonstrated a CO2

mitigation rate of 327-547 mg/L and a biomass pro-

ductivity of 213-358 mg/L. According to Chaudhary

et al. (2018), the daily maximum CO2 mitigation rate

by Chlorella vulgaris ATCC 13482 was 140.91 mg/L

when grown in municipal wastewater aerated with 5%

CO2 in air at a flow rate of 1.4 L/min. The daily

maximum CO2 mitigation rate by Scenedesmus obliquus

FACHB was marginally lower at 129.82 mg/L. Hariz

et al., (2019) grew the native microalga Chlorella sp.

UKM2 using CO2 and palm oil mill effluent. The

micro-alga fixed CO2 at a rate of 0.829 g/L Day and

removed 48%, 85%, and 86% of the COD, TP, and

TN, respectively, after operating for 15 days. 12.435

g/L of CO2 was recovered in total. In a different

study, Kassim and Meng (2017) examined the CO2

bio-fixation by Tetraselmis suecica and Chlorella sp. using

various elevated CO2 concentrations. Using 0.04%,

5%, 15%, and 30% CO2, the impact of CO2

concentration on the kinetics of micro-algae growth,

bio-fixation, and its chemical composition was

ascertained. Investigations were also conducted into

the relationship between the initial pH value variation

and the CO2 concentration toward the cultivation

medium. Different levels of tolerance to CO2

concentration were demonstrated by two micro-algae.

When Chlorella sp. was cultivated with 5 and 15%

CO2, respectively, the maximum biomass production

and bio-fixation of 0.64 g L-1 and 96.89 mg L-1 d -1

were attained. In contrast, T. suecica produced the

highest amount of biomass (0.72 g L-1 and 111.26 mg

L-1 d -1) when grown in environments with 15 and 5%

CO2, respectively. The CO2-infused cultivation

medium had a pH range of 7.5 to 9, which is perfect

for micro-algae development. This study indicates

that T. suecica and Chlorella sp. are useful algae for CO2

bio-fixation (Kassim and Meng, 2017). Due to their

greater capacity for photosynthetic respiration and

carbon dioxide sequestration, Chlorella sorokiniana and

Scenedesmus obliquus were used in application of a

micro-algae CO2 capturing system (Sreelakshmi et al.,

2021). Scenedesmus obliquus was found to grow more

quickly in the purified condition, which eventually

leads to improved CO2 scrubbing. Out of the purified

biogas, Scenedesmus obliquus removed 50% of the CO2,

while Chlorella sorokiniana was only able to sequester

23%. Research indicates that Scenedesmus sp. can

sequester up to 80% of CO2, while Chlorella sp. can

scrub up to 40%. Sumardiono et al. developed a

photobioreactor system that uses Nannochloropsis to

grow micro-algae and purify biogas. The setup

decreased the concentration of CO2 in biogas by 27%

and consequently enhanced micro-algae biomass

(Sumardiono et al., 2014). Chlorella sp. reduced CO2

and H2S content to 97.07% and 100% respectively

(Mann et al., 2009). Methane content can be increased

and CO2 content can be decreased in biogas with the

use of microalgae's bio-capture of CO2.
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Environmental factors that affect micro-algal

culturing for capture of carbon dioxide

Carbon dioxide removal rate by micro-algal cells

depends on several factors such as gas aeration rate,

CO2 concentration, light spectrum intensity, pH, tem-

perature, photo period and nutrients availability

(Thomas et al., 2016, Fernandez et al., 2012). Figure 3

illustrates several factors which enhance CO2 removal

rate of micro-algae an its cultivation and growth.

Light. One of the main energy sources that

microalgae use for photosynthesis is light. Light

quantity, then, is the amount of illumination, whether

it comes from artificial or natural sources. As

anticipated, increasing light intensity causes the

micro-algae biomass in the culture to grow until it

reaches a saturation point, at which point the rate of

photosynthesis reaches its maximum level (Gani et al.,

2019). However, photoinhibition may result from

exposure to excessive amounts of light (Gani et al.,

2019, Kumar et al., 2018). Reactive oxygen species

that are damaging to microalgae cells and indirectly

lower biomass productivity are the cause of

photoinhibition. Scenedesmus sp. produced microalgae

at a rate that was roughly 45% higher than at a single

wavelength of 400–700 nm white light, according to

Kim et al. (Kim et al., 2013). Green microalgae

Scenedesmus obliquus 276.7 was grown by Sforza et al. in

BG11 medium at 23°C, with the best growth

conditions achieved at 150 µmol m-2 s -1. Up until the

Figure 3

Shows several factors which enhance CO2 removal rate of micro-

algae an its cultivation and growth (Culled from Li et al., 2023)

point of saturation, its growth rate increased linearly

with an increase in light intensity (Sforza et al., 2014).

Photoperiod. The length and pattern of exposure, or

photoperiod the amount of time an organism is

exposed to light each day, is another crucial factor to

take into account. In terms of duration, it also refers

to light exposure, with minimum and maximum

values of 0:24 and 24:0 hours, respectively. Since

photoperiod directly affects the efficiency of

photosynthesis of micro-algae in the culture, it is just

as important as light intensity (Gani et al., 2019). The

impacts of different photoperiods have been

investigated in order to develop the best exposure

plan. Three examples of light/dark cycles are the

12/12 (Nithiya et al., 2017, Duarte et al., 2017), 16/8

(Aslam et al., 2017), and 14/10 (Kumari et al., 2014)

hour cycles. The type and species of strain will

determine the ideal photoperiod for microalgae.

Apart from that, variations in the necessary optimal

photoperiod may also be attributed to the natural

habitat of micro-algae. Few studies have examined

how photoperiod affects the growth rate and

productivity of specific algae, including Chlorella

vulgaris, Neochloris conjuncta, Botryococcus braunii,

Scenedesmus sp., and Eustigmatophyte Nannochloropsis sp.

(Krzemińska et al., 2014, Wahidin et al., 2013).

Krzemińska and colleagues found that while Neochloris

conjuncta was more tolerant at 12:12 hours in terms of

growth rate and biomass production, continuous

illumination more effectively stimulated the growth of
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Botryococcus braunii and Scenedesmus obiquus (Krzemińska

et al., 2014). After analyzing the effects of

photoperiod on Nannochloropsis sp. for eight days,

Wahidin et al. (2013) discovered that the optimal light

exposure occurs during 18:6 hours, resulting in a ma-

ximum cell concentration of 6.5 × 107 cells/mL.

Howerer, unlike other microalgae species, Chlorella

vulgaris has a completely distinct photoperiod. Due to

their natural habitat in wetlands, Chlorella vulgaris

maximize their biomass when exposed to a

photoperiod of 16:8 hours with 62.5 µmol m-2 s -1 of

illumination (Gani et al., 2019). Rai et al. (2017)

observed that prolonged exposure to light, with a

24/0 light/dark cycle, can cause strain on the

organism; thus, dark periods are necessary for the

proper metabolic activity of algae

Temperature. Microalgae's cell size and biochemical

makeup are greatly influenced by temperature. Varia-

tions in temperature have the potential to severely

impair the growth of microalgae cells, rendering them

incapable of proliferating (Gani et al., 2019).

According to Zhao et al., the range of 15 to 26 ◦C was

ideal for the growth of the most prevalent micro-algae

(Zhao et al., 2014). Micro-algae are often irreversibly

damaged by high temperatures. Table 3 highlights the

optimal temperatures for different species of micro-

algae. Chlorella pyrenoidosa M18 was found by Sachdeva

et al. to be capable of withstanding temperatures as

high as 47 ◦C, with the maximum average growth rate

occurring at 37 ◦C (Sachdeva et al., 2016).

Microalgae
Growth 

medium

Growth 

temperature (oC)

Specific 

growth (d -1)
Reference

Chlorella pyrenoidosa M18 BG 11 37 0.70 Sachdeva et al., 2016

Thermosynechococus elongatus

PKUAC-SCTE542
BG 11 55 0.22 Liang et al., 2019

Chlorogleopsis sp. BG 11 50 0.14 Li et al., 2023

Chlorella sp.  MT-IS Artificial seaweed 30
Approximately 

0.80
Li et al., 2023

Nannochloropsis oculata Modified Fitzgerald 30 1.60 Li et al., 2023

Table 3. The optimal growth temperature for different species of micro-algae

Salinity. The presence of salt in the water necessary

for the growth of microalgae is referred to as salinity.

As anticipated, freshwater algae use a lower salinity

concentration than marine algae (Harris et al., 2022,

Gani et al., 2019). Since salinity can have an impact on

algal growth, salinity is another essential parameter

that needs to be measured (Gani et al., 2019). Because

it can change the structure of their cells, freshwater

algae are harmed when exposed to high salinities.

Over-salinity reduces the biomass productivity of

microalgae and prevents photosynthesis (Gani et al.,

2019).

pH. Most micro-algae are suitable for cultivation

under neutral pH conditions (Hosseini et al., 2018),

with exceptions, such as Chlorococcum could live in pH

4.0, and Spirulina at pH 11.0 (Razzak et al., 2015).

Razzak et al. discovered that Nannochloropsis oculata).

grew well between medium pH 5.5 and 6.5 (Razzak et

al., 2015).

Nutrient Element. The building blocks of micro-al-

gae’s cell synthesis include carbon, nitrogen, and pho-

sphorus, which are also crucial nutrients for the

biomass growth. To some extent, the photosynthesis

of micro-algae is influenced by the species, morpho-

logy, and quality of the nutrients. Carbon–nitrogen

ratio (C/N) is among the important factors affecting

carbon fixation efficiency, biomass accumulation and

productivity of value-added components (Li et al.,

2020, 2018, Razzak et al., 2017).

Carbon dioxide concentration. The capability of

different micro-algae to tolerate CO2 is different.

Even though certain micro-algae have great CO2

tolerance and can grow across most of the CO2 con-
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centration range, the optimal growth concentration is

determined. Some micro-algae can grow normally at

low concentrations of CO2, while some will only

show high growth rates at high concentrations of

CO2. Either a too high or too low CO2 concentration

reduces the CO2 fixation efficiency and the biomass

yield (Anjos et al., 2013). However, high CO2

concentrations can lower pH causing impeded cell

growth (Li et al., 2023).

Prospects of an Algal carbon dioxide scrub

system

Researchers found that micro-algae have a CO2

fixation rate of 0.73 to 2.22g -1 L-1 day, or roughly 12

to 15% of atmospheric CO2, which is 10 to 50 times

higher than other terrestrial plant species

(Pourjamshidian et al., 2019, Cheah et al., 2015).

Seeing that assimilation of CO2 increases the growth

of micro-algae, in turn increasing the carboxylase

activity leading to photosynthetic activity, several

studies have taken interest in the workability of algae

as a carbon scrub for upgrade of biogas (Thomas et

al., 2016). The development of Spirulina sp. microalgal

biomass and lipid production during cultivation were

assessed in a study conducted by Orugani et al.

(2023). Air and biogas from an anaerobic digester

were fed to Spirulina. When compared to an air

supply, it was found that the reactor sparged with

biogas had a sharp rise in production. The amount of

lipid in the reactor that was sparged with biogas

increased significantly. The increasing availability of

CO2 that is promoting algae growth may be the cause

of this increase in biomass production. Algal carbon

capture is a biological method that merits more

investigation to rival current carbon capture

technologies (Paul et al., 2020). Table 4 itemizes algal

scrub system using named micro-algae indicating their

CO2 and CH4 removal rates. Notably, algae can

extract biofuel and trans-form carbon dioxide (CO2)

into biomass. They are also a useful source of

bioenergy (Jalilian et al., 2020, Saifuddin et al., 2015,

Hernandez-Mireles et al., 2014).

Microalgal species
In/Out 

-door
System

CO2 % 

Removal

CH4 % 

Removal
Reference

Chlorella sp. Outdoor HRAP 95 94 Hoyos et al., 2024 

Chlorella vulgaris Outdoor HRAP 55 80.4 Hoyos et al., 2024 

Scenedesmus obliquus Outdoor EPB 62 82.6 Velasco et al., 2023

Neochloris oleoabundans Outdoor EPB 54 80.0 Velasco et al., 2023

Table 4. Shows the potential of algal scrub systems

Figure 4

Operation of CO2 removal 

using High-Rate Algal Pond 

(HRAP) photobioreactor

(Culled from Hoyos et al., 

2024)

EQA 64 (2024): 33-47
U.N. Kemka et al. 

DOI: 10.6092/issn.2281-4485/19915



42

Combinations of microalgae and bacteria have also demon-

strated the effective CO2 removal capabilities of a strong

and stable photosynthetic population. Velasco et al., 2023,

studied the performance of an outdoor pilot-scale system

made up of a high-rate algal pond planted with a micro-

algal-bacterial consortia. The consortium used biogas and

organic leachate, which is obtained from the anaerobic

hydrolysis of food waste, as sources of CO2 and nutrients,

respectively. This is as shown in Figure 4 where high-rate

algal pond (HRAP) photobioreactor is used for CO2

removal. Biogas had removal efficiencies of 80.0% and

99.9% for CO2 and H2S, respectively, resulting in a metha-

ne content of about 55 vol%. Along with certain micro-

algae atmospheric CO2, the microbial mixture included

Picochlorum sp., Pseudanabaena sp., Spirulina sp., and Nitzschia

sp. (Velasco et al., 2023; Hoyos et al., 2024)..

Conclusions

Biogas, a combination of methane, carbon dioxide,

and other uncommon gases, is produced by anaerobic

digestion systems. The carbon dioxide that is present

in this process can be efficiently used by micro-algae

to improve their photosynthetic and heterotrophic

capabilities, which raises the quality of bio-methane

produced while also removing CO2 from the atmo-

sphere and supports the circular economy idea.

Micro-algae are a good choice for scrubbers because

they are readily available, can withstand high pH and

CO2 levels, and are simple to harvest. This review

provided evidence-based information about the

potential of algae to sequester carbon dioxide from

biogas. In order to reap environmental benefits of

using micro-algae for biological purification processes,

novel emerging technologies can be employed to

enhance this upgrade technology.
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