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Abstract

Air pollution arises from several sources, encompassing industrial, transportation, and home activities, and

carries significant implica- tions for environmental health. High population mobility in a place, such as Jakarta,

might exacerbate air pollution. In 2021, Jakarta, des- ignated as the Special Capital Region, had the highest

population den- sity in Indonesia, with 15,978 individuals per square kilometer (km2). IQAir reports that Jakarta

frequently places among the cities with the most unfavorable air quality globally. In 2021, Jakarta was identified

as the most polluted city in Indonesia, while Indonesia was placed 17th out of 118 countries for having the

poorest air quality. Hence, the Jakarta Environmental Agency has formulated an Air Pollution Control Strategy

till 2030 to diminish the proportion of lethal pollu- tion levels. Given the significance of air pollution’s

detrimental effects on health, it is imperative to consistently regulate and oversee air pol- lution, including

forecasting. This study utilizes the forecasting of the Air Quality Index (AQI) in Jakarta at air quality monitoring

stations DKI1, DKI2, DKI3, DKI4, and DKI5. The Air Quality Index (AQI) data for Jakarta were obtained

from the Jakarta Open Data portal spanning the years 2010 to 2021. The ARIMA model was utilized to process

this data. The generated models were assessed for error levels using the parameters Mean Squared Error (MSE),

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Ab- solute Percentage Error

(MAPE). This study produced a total of 25 ARIMA models to forecast the levels of air quality index (AQI) con-

taminants. The levels of PM10, SO2, CO, O3, and NO2 at the five stations were determined to be highly accurate,

accurate, and quite accurate, with Mean Absolute Percentage Error (MAPE) values rang- ing from 8% to 43%.
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Introduction

Air pollution arises from diverse sources, including

industrial, transportation, and home sectors, exerting

an influence on environmental well-being. Various va-

riables, including as population expansion, high urba-

nization rates, inadequate spatial planning, and limited

public awareness, indirectly contribute to air pollution

(Simandjuntak, 2013). Air pollution is a matter of

worldwide significance. Air pollution results in the

introduction of dangerous solid, liquid, and gaseous

chemicals into pure air, leading to contamination

(Abidin and Hasibuan, 2019). The general public

frequently underestimates the se- rious risk that

polluted air poses to human health. Long-term,

consistent rises in atmospheric pollution can result in
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respiratory conditions such as emphysema, bronchitis,

and lung cancer Sandhi, 2019. short term exposure to

air pollution such as PM2.5 has also been linked to

short term health problems such as cognitive decline

(please enter reference ). The mobility of the people

in regions such as Jakarta might lead to an escalation

in air pollution. Jakarta, the Special Capital Region of

Indonesia, holds the distinction of being the most

densely inhabited area in the country, with a popu-

lation density of 15,978 individuals per square

kilometer (km2) Badan Pusat Statis tik, 2021. A high

population density implies a widespread reliance on

both private and public transportation for daily acti-

vities. In DKI Jakarta, there are a total of 21.7 million

vehicles, with motorbikes being the most prevalent at

16.5 million units, followed by passenger cars, lorries,

and buses Korlantas Kepolisian Republik Indonesia,

2022. DKI Jakarta frequently ranks as having the

most unfavorable Air Quality Index (AQI) globally, as

reported by IQAir (2023) Air, 2023. According to the

UCAR Center for Science Education (2023), air qua-

lity refers to the measurement of pollutants present in

a specific location, as shown by the air quality index

for Science Education, 2023. Presently, Jakarta is

equipped with a total of five air quality monitoring

stations. There is a police post near the HI Roun-

dabout in Central Jakarta (DKI1 station), one at the

Kelapa Gading Subdistrict Office in North Jakarta

(DKI2 station), one at the Taman Pendidikan Dinas

Pertamanan in South Jakarta (DKI3 station), one on

Pondok Gede Street in East Jakarta (DKI4 station),

and one at Kebon Jeruk Residential Park in West

Jakarta (DKI5 station). Jakarta claimed the top spot as

the most polluted city in Indonesia in 2021, while

Indonesia itself rated 17th among 118 nations with

the most severe air pollution. In response to this, the

Jakarta Environmental Agency devised an Air Pollu-

tion Control Strategy that aims to decrease the

propor- tion of lethal pollution levels by 2030. This

strategy functions as a point of reference in this

research. Due to the substantial influence of air

pollution on health, it is crucial to consistently

regulate and oversee air pollution, in- cluding the use

of prediction methods. This study focuses on

forecasting the Air Quality Index (AQI) in Jakarta.

Various statistical techniques, such as Autoregressive

Integrated Moving Average (ARIMA), smoothing,

regression, and econometrics, can be employed for

prediction purposes (Box et al., 2015). The selection

of the methodology is determined by the particular si-

tuation constraints, data patterns, preci- sion, and mo-

del observations. The choice of ARIMA in this work

was based on its simplicity and ability to handle data

with diverse patterns. ARIMA’s three primary

parameters, namely p, d, and q, reflect the autore-

gressive, differencing, and moving average compo-

nents, respectively, providing flexibility in modeling.

ARIMA can be applied to time series data with

different properties by modifying these parameters.

Furthermore, ARIMA can effectively address patterns

and seasonal components. When seasonal patternsare

detected in the data, the model will incorporate sea-

sonal components to enhance the accuracy of fore-

casts and accommodate recurring changes. Seasonal

data commonly displays patterns characterized by

observations occurring at regular intervals of periods.

Data visualization can be employed to ascertain

seasonal values or components Dimashanti and Sugi-

man (2021). Additionally, the selection of ARIMA

was based on a comparison analy- sis, which showed

that the ARIMA (1,1,0) model outperforms the

LSTM model with 7000 batches in forecasting CO

levels Spyrou et al., 2022. In another study, it was

discovered that the ARIMA model was more effective

than the WNN and SVM models in forecasting air

pollution. The ARIMA model achieved a R2 value of

0.882, an MSE value of 0.056, and an NSE value of

0.880 Zhang et al., 2020. In terms of relevant study,

utilizing the ARIMA (1,0,0) model to forecast the

AQICO values in Surabaya. This model demonstrated

the lowest Root Mean Square Error (RMSE) of

0.2349, indicating its superior performance Syaifulloh,

2021. In a separate research, an ARIMA(2,1,3)(1,0,0)

model was employed to predict the levels of AQI

PM10 in Bangalore Hosamane et al., 2020. This

research aims to forecast the Air Quality Index (AQI)

data for Jakarta using the Autoregressive Inte grated

Moving Average (ARIMA) model, based on the pro-

vided information.

ARIMA Model

Autoregressive Integrated Moving Average (ARIMA),

also known as the Box- Jenkins method, is a statistical

technique used for the analysis and forecasting of

time series data. The purpose of using this method in

time series data analysis is to identify patterns and

trends in the data and make predictions for future

values. ARIMA demonstrates high forecasting

accuracy for short- term or brief time periods but is

typically less precise when used to forecast values

over longer time frames because it tends to produce

stable or constant estimates Adri Senen (2017).
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ARIMA has three main components, namely AR

(Autoregressive), I (Integrated), and MA (Moving

Average) model. The AR model describes the

relationship between the dependent variable (X) and

its previous values. An AR model with order p is

denoted as AR(p), expressed as follows:

[1]

[2]

[3]

The MA model depicts the relationship between

the dependent variable (X) and the previous values

of residuals or errors. An MA model with order q is

denoted as MA(q), expressed as follows:

An ARIMA model with orders p, d, and q is denoted

as ARIMA(p,d,q). In the ARIMA model, the

differencing step (d) is applied to make the time series

stationary before applying the ARMA components.

For example, if d = 1 is performed, differentiating

(B)1Xt = Wt results in a horizontal pattern with an

average of Φ = 0, and the model is then written as an

ARMA(p,q) model, expressed as follows:

Methodology

This research is conducted using the Cross-Industry

Standard Process for Data Mining (CRISP-DM)

method. CRISP-DM is a method commonly used as

an independent process by industries for data mining.

The method stages can be viewed through the

flowchart in Figure. 1. The first stage is business

understanding, it involves defining the prob- lem,

understanding business perspectives and needs, and

planning to achieve goals in addressing air pollution in

DKI Jakarta Province. Through fore- casting using the

ARIMA method based on historical ISPU Jakarta data,

information on air quality is obtained as a basis for

government decision- making and public awareness of

air health. This process contributes to pru- dent

decision-making by authorities regarding air pollution

and encourages public awareness to maintain air

health. Additionally, literature review is conducted in

this phase to serve as research references. The second

is data understanding, it involves the process of

understand- ing the data, encompassing data

acquisition, description, exploration, and evaluation.

The historical data used comprises the Air Quality In-

dex (AQI) data for DKI Jakarta Province from 2010

to 2021, sourced from the public Jakarta Open Data

platform. The variables utilized include the date and

ISPU values for air pollutants PM10, SO2, CO, O3,

and NO2.. The following subsections outline the

procedures involved in ARIMA model are data

preparation, modeling, and evaluation Wei, 2018.

Pre-processing

Data integration, this stage is performed by consoli-

dating all AQI data files at each station into one in

‘.csv’ storage format. Data cleaning, this stage is car-

ried out to remove unnecessary variables. During

Figure 1. Flowchart
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this phase, data with issues, such as missing data in a

single row at the beginning of the year, will be

dropped or removed entirely. For randomly missing

data in specific cells, imputation will be performed by

calculating replacement values using the average of

values at Xt−1 and Xt−1 (where Xt represents the

missing data).

Data Splitting

This step involves dividing the data into two types,

namely, training data and test data. The test data con-

sists of the last 7 data points for each pollutant at

each station.

For PM10 pollutant, a total of 19,709 data were used

for the training process and 35 data for testing. Speci-

fically, DKI1 station utilized daily data from 2010 to

2021, with 4376 training data and 7 testing data (table

1). DKI2 station employed daily data from 2011 to

2021, with 4018 training data and 7 testing data.

DKI3 station used daily data from 2011 to 2021,

comprising 4018 training data and 7 testing data.

DKI4 station employed daily data from 2011 to 2021,

with 4018 training data and 7 testing data. DKI5

station utilized daily data from 2013 to 2021, with

3279 training data and 7 testing data.

Station Time Frame Training Data Testing Data

DKI1 2010 - 2021 4376 7

DKI2 2011 - 2021 4018 7

DKI3 2011 - 2021 4018 7

DKI4 2011 - 2021 4018 7

DKI5 2013 - 2021 3279 7

Table 1: Split the data for the PM10 pollutant

For SO2 pollutant, a total of 19,709 data were used for

the training process and 35 data for testing. Specifical-

ly, DKI1 station utilized daily data from 2010 to 2021,

with 4376 training data and 7 testing data. DKI2

station employed daily data from 2011 to 2021, with

4018 training data and 7 testing data (Table 2). DKI3

station used daily data from 2011 to 2021, comprising

4018 training data and 7 testing data. DKI4 station

employ-yed daily data from 2011 to 2021, with 4018

training data and 7 testing data. DKI5 station utilized

Station Time Frame Training Data Testing Data

DKI1 2010 - 2021 4376 7

DKI2 2011 - 2021 4018 7

DKI3 2011 - 2021 4018 7

DKI4 2011 - 2021 4018 7

DKI5 2013 - 2021 3279 7

Table 2. Split the data for the SO2 pollutant

Station Time Frame Training Data Testing Data

DKI1 2010 - 2021 4376 7

DKI2 2011 - 2021 4018 7

DKI3 2011 - 2021 4018 7

DKI4 2021 358 7

DKI5 2013 - 2021 3279 7

Table 3. Split the data for the CO pollutant

daily data from 2013 to 2021, with 3279 training data

and 7 testing data.

For CO pollutant, a total of 16,049 data were used for

the training process and 35 data for testing.

Specifically, DKI1 station utilized daily data from

2010 to 2021, with 4376 training data and 7 testing

data. DKI2 station employed daily data from 2011 to

2021, with 4018 training data and 7 testing data

(Table 3). DKI3 station used daily data from 2011 to

2021, comprising 4018 training data and 7 testing

data. DKI4 station employed daily data from 2021,

with 4018 training data and 7 testing data. DKI5

station utilized daily data from 2013 to 2021, with

3279 training data and 7 testing data.

Station Time Frame Training Data Testing Data

DKI1 2021 358 7

DKI2 2021 358 7

DKI3 2021 358 7

DKI4 2021 358 7

DKI5 2021 358 7

Table 4. Split the data for the O3 pollutant

For O3 pollutant, a total of 1790 data were used for

the training process and 35 data for testing. Specifi-

cally, DKI1 station utilized daily data from 2021, with

358 training data and 7 testing data. DKI2 station

employed daily data from 2021, with 358 training data

and 7 testing data (Table 4). DKI3 station used daily

data from 2021, comprising 358 training data and 7

testing data. DKI4 station employed daily data from

2021, with 358 training data and 7 testing data. DKI5

station utilized daily data from 2021, with 358 training

data and 7 testing data.

For NO2 pollutant, a total of 19,709 data were used

for the training process and 35 data for testing. Spe-

cifically, DKI1 station utilized daily data from 2010

to 2021, with 4376 training data and 7 testing data

(Table 5). DKI2 station employed daily data from

2011 to 2021, with 4018 training data and 7 testing

data. DKI3 station used daily data from 2011 to

2021, comprising 4018 training data and 7 testing da-
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Station Time Frame Training Data Testing Data

DKI1 2010 - 2021 4376 7

DKI2 2011 - 2021 4018 7

DKI3 2011 - 2021 4018 7

DKI4 2011 - 2021 4018 7

DKI5 2013 - 2021 3279 7

Table 5. Split the data for the NO2 pollutant

ta. DKI4 station employed daily data from 2011 to

2021, with 4018 training data and 7 testing data.

DKI5 station utilized daily data from 2013 to 2021,

with 3279 training data and 7 testing data.

Modeling

Model identification. This is the stage of

recognizing whether the data being used is stationary

or not. In the context of ARIMA analysis, data must

be stationary in both mean and variance. To

determine if the time series data is stationary in mean,

a test is conducted using the Dickey-Fuller test. If it

turns out that the data is not stationary in mean, a

differencing process of order d is performed. The

following is the hypothesis statement for the Dickey-

Fuller test:

1. H0 = The data is not stationary in mean.

2. H1 = The data is stationary in mean.

3. Determining α = 0.05

4. Critical area = H0 is rejected if the p-value < α,

meaning the data is stationary in mean.

Subsequently, to evaluate whether the data exhibits

variance stationarity, a Box-Cox test is employed. In

this context, the focus is on the value of λ. If λ = 1, it

signifies non-stationarity in variance, necessitating a

transformation process. To stabilize the variance

using Box-Cox transformation with the parameter λ,

as in this equation Heni Kusdarwati and Handoyo,

(2018):

[4]

Various values of lambda and the transformation

shapes resulting from equation [4] can be found in

Table 6. The table illustrates various transformation

functions applied to the variable Xt based on diffe-

λValue -1 - 0.5 0 0.5 1

Transformation 1/Xt λXt Xt

Table 6. The form of transformation

rent λ values. These transformations play a crucial role

in data manipulation and statistical modeling. The

choice of transformation depends on the specific

characteristics and distribution of the data under

consideration. The next step is to identify the order of

the ARIMA model based on the Autocorrelation

Function (ACF) and Partial Autocorrelation Function

(PACF) plots. To estimate the values of p and q for

the ARIMA model, one can observe the shapes of the

ACF and PACF plots. Table 6 describes the patterns

that may appear in the ACF and PACF plots in

accordance with the ARIMA model theory. By

referring to the ACF and PACF plots of the available

data, several hypotheses can be proposed regarding

the appropriate order values for ARIMA model

development Heni Kusdarwati and Handoyo, 2018.

The table 7 presents the ACF and PACF patterns for

different time series models. The models considered

include AR, MA, and ARMA. The ACF plot for an

AR(p) model exhibits exponentially decreasing

autocorrelation, while the PACF plot shows a cut-off

at lag p. Conversely, for an MA(q) model, the ACF

plot has a cut-off at lag q, and the PACF plot exhibits

exponentially decreasing values. In the case of an

ARMA(p,q) model, both the ACF and PACF plots

demonstrate a tail-off pattern. Understanding these

characteristic patterns is essential for model selection

and parameter estimation in the analysis of time series

data.

Model ACF Plot PACF Plot

AR(p)
Exponentially

decreasing

Cut off

at lag p

MA(q) Cut off at lag q
Exponentially

decreasing

ARMA(p,q) Tail off Tail off

Table 7. ACF and PACF Plot

Parameter estimation and significance testing.
The next step is to seek estimates of the possible

model values, followed by conducting tests to

determine the significance of the parameters in the

model. These tests are crucial to ensure that the

chosen model has an adequate level of significance,

indicating its suitability for use. In the Python

programming language, model parameters are compu-

ted automatically using the Maximum Likelihood

Estimation (MLE) method. Significance testing of the

parameters is performed using the Wald test. The

following is the hypothesis statement:
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1. H0 : βj = 0 (The parameters are significant).

2. H1 : βj 0, = 1, 2, 3, ..., k (The parameters

are not significant).

3. Determining α= 0.05

4. Critical area = H0 is rejected if the p-value < α,

meaning the parame-ters are significant.

Diagnostic testing. After the identification and

parameter estimation phase is completed, the next

step is to perform diagnostic tests to evaluate the

residuals of the model and test whether the model

exhibits white noise and follows a normal distribution.

Residuals are referred to as ”white noise” if they do

not meet the criteria for white noise Ahmar et al.,

2018. The following is the hypothesis statement for

the Ljung-Box test:

1. H0 : ρj = 0 (The residuals are white noise).

2. H1 : ρj ̸= 0, = 1, 2, 3, ..., k (The residuals are not

white noise).

3. Determining α= 0.05

4. Critical area = H0 is rejected if the p-value < α, mea-

ning the residuals do not meet the criteria for white

noise.

The test to determine whether the residuals

follow a normal distribution or not is conducted

using the Shapiro-Wilk test. The following is the

hypothesis statement for the Shapiro-Wilk test:

1. H0 : F (x) = F0(x) (The residuals follow a nor-

mal distribution.).

2. H1 : F (x) ̸= F0(x) (The residuals do not follow a

normal distribution.).

3. Determining α= 0.05

4. Critical area = H0 is rejected if the p-value > α, mea-

ning the residuals do not follow a normal distribu-

tion.

Prediction

The prediction process is performed by forecasting

the training and test data using the selected tentative

model.

Evaluation

Mean Squared Error (MSE). MSE is one of the

error criteria in nonparametric regression. MSE is a

metric that measures the average of the squared

differences between the actual and predicted values

Allen (1971). MSE penalizes larger errors more beca-

use each difference is squared. The formula is expres-

sed in equation [5].

[5]

Root Mean Squared Error (RMSE). RMSE is the

square root of MSE and has the same units as the

target variable, which is typically a unit of time. It is

used to measure how close the predicted values are to

the actual values. Smaller RMSE indicates better

model performance Jadon et al., 2022. The formula is

expressed in equation [6]

[6]

Mean Absolute Error (MAE). MAE is a metric that

calculates the average of the absolute differences

between the predicted and actual values. Like MSE,

MAE is used to measure the accuracy of a model, but

it assigns equal weight to all errors, regardless of

whether they are large or small Chicco et al., 2021.

The formula is expressed in equation [7]:

[7]

Mean Absolute Percentage Error (MAPE). MAPE

is a measure of accuracy obtained by calculating the

distance be- tween actual and predicted data. MAPE

is computed by taking the absolute errors within a

specific time frame or season and dividing them by

the actual data value, then expressing the result as a

percentage De Myttenaere et al., 2016. The formula is

expressed in equation [8]:

[8]

According to Lewis (1982), MAPE consists of several

levels of accuracy Lewis, 1982. The table 8 categorizes

the MAPE into different levels of accuracy. MAPE is a

widely used metric to assess the accuracy of

forecasting models. These accuracy levels provide a

standardized framework for interpreting MAPE results

in various domains and applications.

MAPE (%) Accuracy

< 10% Highly accurate

10% − 20% Accurate

20% − 50% Quite accurate

> 50% Inaccurate

Table 8

The level

of MAPE

accuracy

Results and Discussion

The following section presents an analysis of the ex-
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perimental results for each pollutant at the five

monitoring stations. The tables below present the

results of modeling analysis, resulting in the best

models with the lowest MAPE on the test data

compared to other tentative models. In this

comprehensive analysis, the performance of each

pollutant model at the five monitoring stations is

thoroughly examined to ensure the accuracy and

reliability of the predictions. Furthermore, the

identification of the best models with the lowest

MAPE values on the test data is essential to provide

policymakers and environmental authorities with

valuable insights into air quality management

strategies. Subsequently, the predicted AQI results are

averaged for the year 2021 and categorized by

pollutant. These aggregated values are then visualized

using graphical plots, as depicted in the image below.

These visual repre- sentations of AQI patterns serve

as a vital resource for both researchers and the

general public, promoting awareness and proactive

measures to safeguard public health and the

environment.

PM10 pollutant prediction results

The table 9 presents the ARIMA order and the

corresponding MAPE for each monitoring station,

providing insights into the accuracy of the PM10

predictions. The MAPE values indicate the accuracy

of the PM10 predictions for each station. According to

the predefined accuracy categories, DKI4’s MAPE of

13.64% falls within the ”Accurate” range, indicating a

high level of precision in its forecasting. For DKI1,

DKI2, DKI3, and DKI5, the MAPE values fall within

the ”Quite accurate” category, suggesting reliable

forecasting performances.

Station
ARIMA

Model

MAPE

(%)

DKI1 AR(2) 20.79%

DKI2 AR(3) 21.75%

DKI3 AR(6) 21.17%

DKI4 AR(6) 13.64%

DKI5 AR(4) 22.20%

Table 9

ARIMA Model

for PM10

The above graph represents the Air Quality Index

(AQI) values derived from the average predicted

values of PM10 pollutant across 5 monitoring sta-

tions in the year 2021 (Fig. 2). The graph illustrates

that the PM10 AQI values are categorized as ’Good’

at the beginning of the year, specifically in January,.

Februaary, and March, as well as towards the end of

the year in December. In the middle of the year, the

average AQI values fall into the ’Moderate’ category.

The ’Good’ category implies that PM10 has no

significant adverse effects on living organisms, while

the ’Moderate’ category may result in re- duced

visibility. The minimum recorded value is 30.34,

while the maximum value reaches 72.47.

Figure 2. The Average AQI for PM10 in Jakarta in 2021

According to the Final Report on the Air Quality

Monitoring in Jakarta (2020), the high values of PM10

pollutant Air Quality Index (AQI) are at- tributed to

the elevated concentrations of AQI pollutants. This

phenomenon is a consequence of the heavy traffic in

Jakarta, where coarse particles on the road surface

may be re-entrained into the air due to vehicular

movement. The daily average of the PM10 pollutant

parameter exhibits a strong correlation with various

meteorological factors, as determined through

correlation tests. It is positively correlated with

temperature and radiation, while inversely related to

humidity. Analyzing the concentration trends of

PM10 during the COVID-19 pandemic reveals fluc-

tuations with no significant differences. However,

when compared to the average PM10 concentrations

in 2020, which stood at 56.38 µg/m3, there was a

reduction. In previous years, the highest annual

averages were 62.23 µg/m3 in 2019 and 57.36 µg/m3

in 2018 Jakarta, 2020a.

SO2 pollutant prediction results

The table showcases the ARIMA order and

corresponding MAPE for each monitoring station,

providing insights into the accuracy of SO2

predictions. The MAPE values indicate the precision

of the SO2 predictions for each station, with all

stations falling within the ”Accurate” range according

to the predefined accuracy categories. Specifically,
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DKI2’s MAPE of 12.46%, DKI5’s MAPE of

14.84%, and DKI1, DKI3, and DKI4 with MAPE

values ranging from 15.13% to 17.86% all

demonstrate accurate forecasting performances for

SO2 levels.

Station ARIMA Model MAPE (%)

DKI1 ARI(4,1) 15.13%

DKI2 ARI(4,1) 12.46%

DKI3 ARI(1,1) 17.86%

DKI4 ARI(4,1) 17.64%

DKI5 ARI(3,1) 14.84%

Table 10

ARIMA Model

for SO2

The graph above represents the AQI values derived

from the average predicted values of SO2 pollutant

across five monitoring stations in the year 2021 (Fig.

3). The graph shows that the SO2 AQI values tend to

be high, categorized as ’Moderate,’ and experience a

significant increase in the middle of the year, indicated

by the AQI value falling into the ’Unhealthy’ category.

The ’Good’ and ’Moderate’ categories signify that SO2

can cause damage or injury to various types of plants

when mixed with O3 in a short period. The minimum

recorded value is 21.14, and the maximum value

reaches 117.47. The data visualization of SO2 AQI

demonstrates significant fluctuations. Based on

meteorological factors, as indicated in the Final

Report on Air Quality Monitoring in Jakarta (2020),

the SO2 pollutant parameter exhibits a direct

correlation with temperature and radiation while

showing an inverse relationship with humidity. The

emissions sources of SO2 are distributed across

various sectors, with 61.96% originating from manu-

facturing industries, contributing approximately 2,637

tons/year. Additionally, 25.71% of the emissions co-

me from the energy sector (around 1,071 tons/year),

Figure 3. The Average AQI for SO2 in Jakarta in 2021

11.58% from transportation (about 493 tons/year),

and 1.26% from commercial and residential sectors

(less than 42 tons/year) (Jakarta, 2020a). When

considering the trends in SO2 concentration during

the COVID-19 pandemic, the annual average concen-

tration of SO2 in 2020, 25.14 µg/m3, showed a decre-

ase compared to the averages of 27.03 µg/m3 in 2019,

20.05 µg/m3 in 2018, and 26.24 µg/m3 in 2017 Jakarta,

2020b. However, in the report records that a

significant increase in SO2 concentration is observed

in 2021. This increase is attributed to the 11.01%

growth in Gross Regional Domestic Product (GRDP)

in 2021, as reported by the Jakarta Statistics Agency.

The manufacturing industry, contributing 12.28%,

was the second- largest contributor to the increase in

SO2 AQI values, following the large retail and trade

sector. This growth in the manufacturing industry is

likely responsible for the elevated SO2 pollutant

emissions Khoirunnisa (2023)..

CO pollutant prediction results

The table 11 presents the ARIMA order and corre-

sponding MAPE for each monitoring station, provi-

ding insights into the accuracy of CO predictions.

According to the predefined accuracy categories,

DKI2’s MAPE of 8.71% considered ”Highly

accurate,” DKI1, DKI3, DKI4, and DKI5’s MAPE,

with MAPE values ranging from 16.19% to 43.39%,

are labeled as ”Quite accurate”.

Station ARIMA

Model

MAPE

(%)

DKI1 AR(5) 16.70%

DKI2 AR(6) 8.71%

DKI3 AR(6) 16.19%

DKI4 ARI(1,1) 43.39%

DKI5 AR(3) 19.98%

Table 11

ARIMA

Model for CO

The graph above is a representation of the AQI values

derived from the average predicted concentrations of

CO pollutant at five monitoring stations in the year

2021 (Fig. 4) The graph shows that the CO AQI

values consistently remain within the ’Good’ cate-

gory. The ’Good’ category signifies that CO has no

significant adverse effects on living organisms. The

recorded values range from a minimum of 6.09 to a

maximum of 41.57. The visualization of CO AQI data

tends to experience an increase. From a meteoro-

logical perspective, based on the Final Report of Air

Quality Monitoring in DKI Jakarta (2020), the CO
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pollutant parameter exhibits an inverse correlation

with radiation and temperature while showing a

direct correlation with humidity. The report records

a significant decrease in 2020, and it remains relati-

vely stable with minimal fluctuations. This pheno-

menon can be attributed to government policies

implemented during the COVID-19 pandemic, such

as Large-Scale Social Restrictions. These policies led

to a reduction in motor vehicle usage, resulting in

decreased CO pollutant levels. When examining the

average values, CO concentrations in 2017 were 1.49

µg/m3, in 2018 were 1.40 µg/m3, in 2019 were 1.49

µg/m3, and in 2020 were 0.46 µg/m3 Jakarta, 2020a.

Figure 4: The Average AQI for CO in Jakarta in 2021

O3 pollutant prediction results

The table presents the ARIMA order and the

corresponding MAPE for each monitoring station,

providing insights into the accuracy of the O3 predic-

tions. The MAPE values indicate the accuracy of

the O3 predictions for each station. According to the

predefined accuracy categories, DKI3’s MAPE of

19.12% and DKI3’ MAPE of 19.72% falls within the

”Accurate” range. For DKI1, DKI4, and DKI5, the

MAPE values fall within the ”Quite accurate”

category, suggesting reliable forecasting performan-

ces. The graph above represents the AQI values

derived from the average predicted concentrations of

O3 pollutant at five monitoring stations in the year

2021 (Fig. 5). The graph shows that the O3 AQI va-

Station ARIMA

Model

MAPE

(%)

DKI1 AR(1) 21.07%

DKI2 AR(3) 19.72%

DKI3 AR(2) 19.12%

DKI4 AR(2) 28.50%

DKI5 AR(1) 28.43%

Table 12

ARIMA Model

for O3

lues consistently remain within the ’Good’ category.

The ’Good’ category implies that O3 may cause

damage to various types of plants when mixed with

SO2 for four consecutive hours. The recorded values

range from a minimum of 6.99 to a maximum of

19.19. The visualization of O3 AQI data exhibits a

horizontal pattern. When examining the average

values, O3 concentrations in 2017 were 51.55 µg/m3,

in 2018 were 37.24 µg/m3, in 2019 were 52.46 µg/m3,

and in 2020 were 56.78 µg/m3. In 2021, there was a

decrease in O3 pollutant AQI values. This reduction

was a result of the implementation of the Montreal

Protocol by the United Nations, specifically the Kigali

Amendment on the Reduction of Ozone-Depleting

Substances (ODS) and Hydrofluorocarbon (HFC) to

pro- tect the ozone layer, prevent extreme climate

changes, and manage COVID- 19 vaccines using

refrigeration systems. COVID-19 vaccines were

managed from production, distribution, to safe and

high-quality vaccination, all in accordance with the

Montreal Protocol dan Kehutanan (BSILHK), 2021.

Figure 5. The Average AQI for O3 in Jakarta in 2021

NO2 pollutant prediction results

The table 13 presents the ARIMA order and

corresponding MAPE for each monitoring station,

providing insights into the accuracy of NO2

predictions. According to the predefined accuracy

categories, DKI2’s MAPE of 9.28% and DKI1’s

MAPE of 10.15% considered ”Highly accurate,”

Station ARIMA

Model

MAPE

(%)

DKI1 AR(7) 10.15%

DKI2 AR(6) 9.28%

DKI3 AR(3) 15.59%

DKI4 AR(6) 30.75%

DKI5 AR(4) 26.84%

Table 13

ARIMA Model

for NO2
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DKI3’s MAPE of 15.59% is labeled ”Accurate. DKI4

and DKI5 with MAPE values are 26.84% and

30.75%, are labeled as ”Quite accurate”. The graph

below represents the AQI values derived from the

average predicted concentrations of NO2 pollutant at

five monitoring stations in the year 2021 (Fig. 6). The

graph shows that the NO2 AQI values consistently

remain within the ’Good’ category. The ’Good’

category implies that NO2 may produce a slight odor.

The recorded values range from a minimum of 6.49

to a maximum of 51.07. The visualization of NO2

displays a horizontal pattern and tended to increase at

the beginning of the year. When considering the

meteorological factors, based on the Final Report of

Air Quality Monitoring in DKI Jakarta (2020), the

correlation between NO2 pollutant parameters is

inversely related to radiation and temperature, and

directly related to humidity. The report records

significant differences in the years 2016, 2017, and

2018, which had lower AQI values compared to the

following years. In terms of average values, NO2

concentrations in 2017 were 13.51 µg/m3, in 2018

were 10.08 µg/m3, in 2019 were 46.6 µg/m3, and in

2020 were 34.50 µg/m3 Jakarta, 2020a.

Figure 6. The Average AQI for NO2 in Jakarta in 2021

Conclusions

Predicting the AQI of PM10, SO2, CO, O3, and NO2

pollutants at the monitoring stations DKI1, DKI2,

DKI3, DKI4, and DKI5 in Jakarta using ARIMA

resulted in 25 models with highly accurate, accurate,

and reasonably accurate performance, each with a

Mean Absolute Percentage Error (MAPE) ranging

from 8% to 43% on the test data. This could provide

guidance for the government in the decision-making

process regarding air pollution control in Jakarta,

and for the public to consistently maintain air quality

for their health.

.
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