
EQA - International Journal of Environmental Quality

ISSN 2281-4485 - Vol. 66 (2025): 107 - 115

Journal homepage: https://eqa.unibo.it/

The journal is hosted and maintained by AlmaDL. Works are licensed under CC BY 4.0

published by

Application of  deep learning techniques for analysis and 

prediction of  particulate matter at Kota city, India

Lovish Sharma, Hajari Singh*, Mahendra Pratap Choudhary

Department of Civil Engineering, Rajasthan Technical University, Kota (Raj.), India

*Corresponding author Email: hajari.phd21@rtu.ac.in

A r t i c l e i n f o

Received 12/11/2024; received in revised form 9/12/2024; accepted 16/12/2024

DOI: 10.6092/issn.2281-4485/20687

©2025The Authors.

Abstract

Air pollution significantly threatens human health and the environment, making accurate prediction of pollutant

concentrations crucial for effective mitigation. This study leverages deep learning models, specifically Long

Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks, to predict concentrations of PM10

and PM2.5. The analysis utilizes hourly air quality data from July 1, 2017, to December 30, 2022, collected from

the portals of the Central Pollution Control Board (CPCB) and Rajasthan State Pollution Control Board

(RSPCB) for Kota city Rajasthan. Data preprocessing involves cleaning, normalization using a min-max scaler,

and handling missing values with Multiple Imputation in XLSTAT. The methodology encompasses dataset

loading, preprocessing, and data splitting, followed by model training and evaluation. Python libraries such as

Pandas, Numpy, TensorFlow, and Matplotlib are employed for data analysis and visualization. Performance

metrics, including Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE),

and R2 score, are calculated to assess the models' predictive accuracy. The results demonstrate that GRU model

effectively capture temporal dependencies in air quality data, offering reliable predictions for PM10 and PM2.5

concentrations with 41.85 and 17.73 RMSE values for PM10 and PM2.5 . These findings underscore the potential

of deep learning models in air pollution forecasting, providing valuable insights for policymakers to implement

timely interventions.
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Introduction

Air pollution, a significant environmental issue, has

been linked to various health problems, environ-

mental degradation, and climate change. Accurate

prediction of air pollution levels is crucial for miti-

gating its impacts on public health and the

environment. In recent years, machine learning

techniques have emerged as powerful tools for pre-

dictting air quality, enabling the development of mo-

dels that can accurately forecast the concentrations of

pollutants such as Particulate Matter (PM10 andPM2.5).

Numerous studies have explored the application of

various machine learning models for air pollution

prediction. One study analyzed PM2.5 pollutants in

polluted cities using a range of machine learning

models, including linear regression, random forest,

KNN, ridge and lasso regression, XGBoost, and

AdaBoost. The results indicated that XGBoost,

AdaBoost, random forest, and KNN models

provided the most reliable predictions, with low error

metrics across several performance indicators

(Kothandaraman et al. 2022). Another investigation

focused on the hourly concentration of PM2.5 over a
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station in Canada using the Group Method of Data

Handling Neural Network (GMDHNN), Extreme

Learning Machine (ELM), and Gradient Boosting

Regression (GBR) tree models. This research

highlighted the impact of data splitting on model

performance, with the ELM model demonstrating

superior accuracy in predicting PM2.5 concentrations

(Alomar et al. 2022). Further studies have delved into

the use of deep learning approaches. Time series

experiments on PM2.5 concentrations were conducted

using a combination of 1D convolutional neural

networks and bidirectional gated recurrent units

(CBGRU), with results showing that the CBGRU

model outperformed traditional machine learning and

conventional deep learning models in terms of

prediction accuracy (Tao et al. 2019). Additional

research explored machine learning models for air

pollution prediction in various regions, such as

Poland and Taiwan, demonstrating the effectiveness

of models like the e-APFM (Enhanced Air Pollution

Forecasting Model) and Gradient Boosting Regres-

sion in predicting pollutant concentrations with lower

deviations between measured and predicted values

(Domańska et al. 2014; Doreswamy et al. 2020). In

another study, Long Short-Term Memory (LSTM)

models were applied, combined with statistical

methods, to forecast PM2.5 concentrations in

Taichung City, Taiwan. This research found that

training models with different feature sets yielded

varying results, with one model achieving the lowest

Root Mean Square Error (RMSE) and the best

accuracy (Kristiani et al. 2021). Another approach

involved the development of an interpolated

convolutional neural network (ICNN) model for

predicting PM10 and PM2.5 concentrations, which, by

incorporating spatio-temporal data, achieved high

prediction performance (Chae et al. 2021). Addi-

tionally, an artificial neural network (ANN) model

was constructed to forecast air quality in Manila,

Philippines, based on the Air Quality Index (AQI).

The model demonstrated high accuracy, with a

correlation coefficient (R2) of 0.999, indicating strong

applicability for air pollutant concentration

forecasting (Viñas and Gerardo, 2022). Despite the

progress made in air pollution prediction using

machine learning, several research gaps remain. Many

studies have focused on PM10 and PM2.5 prediction in

urban settings, with limited research on the applica-

bility of deep learning models like LSTM and Gated

Recurrent Unit (GRU) in semi-urban or less polluted

areas. Based on the existing research gap, the present

study applies deep learning models, specifically Long

Short-Term Memory (LSTM) and Gated Recurrent

Unit (GRU), for predicting PM10 and PM2.5 concen-

trations in Kota City, Rajasthan, India. Kota repre-

sents a semi-urban area with unique air quality chal-

lenges, making it an ideal case study for assessing the

effectiveness of these models in a different geographi-

cal and pollution context. The aim of the study is to

develop and evaluate deep learning models for the

accurate prediction of air pollution levels in Kota

City. Specifically, the study focuses on applying Long

Short-Term Memory (LSTM) and Gated Recurrent

Unit (GRU) models to predict the concentrations of

PM10 and PM2.5. The performance of these models

will be assessed using key metrics, including Mean

Square Error (MSE), Root Mean Square Error

(RMSE), Mean Absolute Error (MAE), and R2 score,

to determine their effectiveness in forecasting air pol-

lution levels in the city. The novelty of this paper lies

in its focused approach to capturing localized trends

and the impact of air pollution specifically in Kota

city through deep learning. Utilizing Long Short-Term

Memory (LSTM) networks, a widely recognized and

reliable machine learning model, this study aims to

accurately capture and predict air quality variations,

providing a tailored analysis for the region. This rese-

arch fills a significant gap, as no prior studies have

employed deep learning models to analyze and fore-

cast air pollution specifically for Kota, making it a

pioneering effort in understanding and managing air

quality in this area.

Materials and Methods

Study area

Kota city, an industrial and educational center in

Rajasthan, faces significant challenges in managing air

quality, particularly with particulate matter pollution.

Recent studies have shed light on pollution patterns

in the region. Kuldeep et al. (2022b) specifically

analyze PM10 and PM2.5 levels in Kota, noting an

increase in the dust ratio (PM10/PM2.5) from 0.36 to
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0.51 over recent years. This trend indicates a shift

toward finer particles, with PM2.5 now making up

over 45% of total particulate matter, posing greater

health risks due to the particles' ability to penetrate

the respiratory system (Kuldeep et al., 2022). Several

studies attribute temporary reductions in air pollution

to the 2020 COVID-19 lockdown, which led to

significant drops in PM10 and PM2.5 levels across

Rajasthan (Sharma et al., 2020; Yadav et al., 2022;

Kuldeep et al., 2022). For instance, Yadav et al. (2022)

observed reductions of 19–30% in Kota and nearby

cities like Jaipur and Jodhpur. In addition, Sharma et

al. found a 30% decrease in PM10 and PM2.5 in Kota

during the lockdown, along with a 45% rise in ozone

levels, suggesting complex pollution dynamics

influenced by restricted human activity. Singh et al.

(2022) similarly emphasize the temporary effects of

human activity restrictions, such as the ban on Diwali

fireworks, which notably reduced PM2.5, PM10, CO,

and SO2 concentrations and improved air quality

(Singh et al. 2022). However, Kuldeep et al. (2022b)

stress that while lockdowns and activity bans can re-

duce pollution in the short term, they are unsustain-

nable for long-term air quality management. Instead,

Kota's growing industrialization and increasing fine

particulate concentrations highlight the need for

targeted pollution control policies tailored to the city's

specific urban-industrial environment (Kuldeep et al.,

2022). hese studies collectively underscore the impor-

tance of developing effective, long-term strategies to

address air quality in Kota, where PM10 remains a

dominant contributor to the AQI year-round

(Kamboj et al. 2022).

Research methodology

In the study, deep learning models LSTM & GRU are

used to predict concentrations of particulate matter in

Kota city of Rajasthan. The data has been obtained

from the website of Central Pollution Control Board

(CPCB) and Rajasthan State Pollution Control Board

(RSPCB). The Figure 1 illustrates the flow chart of

methodology wherein the data is preprocessed and

the missing values are removed using XLSTAT

software. Data has been splitted in the ratio of 80:20

(Training: Testing).

Figure 1

Flow chart of methodology

Data pre-processing

Once the dataset is collected, a series of data

preparation steps are undertaken. Python is utilized

for initial data processing, with the Pandas library

employed for data cleaning. This includes tasks such

as identifying and handling null values, filling in mis-

sing data, and labeling the dataset appropriately.

Normalization of the data is performed using the

min-max scaler, which scales the data to a range

suitable for deep learning models. To address any

missing values in the dataset, XLSTAT software is

used, which provides various imputation methods

EQA 66 (2025): 107-115L. Sharma, H. Singh, M.P. Choudhary

DOI: 10.6092/issn.2281-4485/20687



110

including mean, median, and more sophisticated

techniques. Specifically, multiple imputation is ap-

plied, which creates multiple versions of the dataset

with different estimated values for the missing data,

thereby improving the accuracy of the subsequent

analyses.

Deep learning classifiers

The final stage of the methodology involves utilizing a

variety of deep learning classifiers to predict air

pollution levels. By comparing the performance and

limitations of different classifiers, the study aims to

identify the most reliable and accurate model for

predicting PM2.5 and PM10 concentrations.

LSTM Classifier

The Long Short-Term Memory (LSTM) network, a

type of recurrent neural network (RNN), is employed

for sequence prediction tasks in this study. LSTMs are

particularly well-suited for problems particularly well -

-suited for problems that require long-term

dependencies, making them ideal for time-series data

like air quality measurements An LSTM network is

composed of units that include an input gate, an

output gate, a forget gate, and a cell. These gates

control the flow of data into and out of the cell,

allowing the network to retain or discard information

as needed as shown in Figure 2. The forget gate

decides what information from a previous state

should be discarded, assigning values between zero

and one, where zero indicates that the information

should be forgotten, and one indicates that it should

be retained. The input gate determines which new

information should be added to the current state,

while the output gate considers both the current and

previous states to decide what data should be output.

By effectively managing these long-term depen-

dencies, LSTM networks can make accurate predi-

ctions for both current and future time-steps in air

quality forecasting (Naresh et al. 2024; Xayasouk et al.

2020).

Figure 2

Long short-term

memory model.

GRU classifier

The Gated Recurrent Unit (GRU) is another type of

RNN that is explored in this study. GRUs are similar

to LSTMs but have a simpler architecture, lacking an

output gate and utilizing fewer parameters (Zhou et

al. 2019). Despite these differences, GRUs perform

similarly to LSTMs in many tasks, including modeling

polyphonic music, analyzing speech sounds, and

understanding spoken language as shown n Figure 3.

GRUs address the problem of vanishing gradients in

recurrent neural networks by using gating

mechanisms that regulate the flow of information,

much like LSTMs. Due to their architectural

similarities and comparable performance, GRUs are

often viewed as a variant of LSTM networks. In this

study, GRUs are evaluated alongside LSTMs to

determine the most effective model for predicting air

pollution levels in Kota city.
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Results and discussion

Correlation analysis

A correlation analysis of the pollutants is conducted

using Python. Data from July 1, 2017 to December

30, 2022 have been taken for analysis. The process in-

volves loading the dataset, filtering it for the speci-

fied date range selecting relevant pollutant columns a

and computing the correlation matrix A heat map is

generated using seaborne to visualize the correlations

where values close to 1 indicate a strong positive

correlation, values close to -1 indicate a strong

negative correlation and values near 0 indicate a

neutral correlation. Figure 4 represents the heat map

of correlation.

Figure 4

Heat map correlation

Figure 4 illustrates that NOx is strongly positively

correlated with NO2 (r= 0.87) which shows that NO2

is a major component of NOx emissions. NOx

primarily consists of nitrogen oxide (NO) and

nitrogen dioxide (NO2) and negatively correlated with

Ozone. PM2.5 & PM10 showing positive correlation

with CO (r=0.47, 0.43), which shows that sources

emitting CO, such as vehicle exhaust, also contribute

to particulate matter pollution. Incomplete combu-

stion processes release both CO and PM, leading to

their concurrent rise in concentrations. CO shows

negative correlation with Ozone. Particulate matter

PM2.5 is positively correlated with PM10 (r= 0.75).

Model performance

The performance comparison between the Long

Short-Term Memory (LSTM) and Gated Recurrent

Unit (GRU) models for predicting PM10 and PM2.5

concentrations in Kota city reveals that the GRU

model generally outperforms the LSTM model across

all evaluation metrics. For PM10, the GRU model

achieves a lower MSE of 1751.98 compared to 1877.5

for LSTM, along with a lower RMSE of 41.85 versus

43.33 for LSTM. Similarly, the GRU model shows a

slightly better MAE of 23.49, compared to 23.96 for

LSTM. The R2 score, which indicates the proportion

of variance explained by the model, is higher for

GRU at 0.65, compared to 0.62 for LSTM. For PM2.5,

the GRU model again outperforms LSTM, with a

significantly lower MSE (314.56 vs. 451.29), RMSE

(17.73 vs. 21.24), and MAE (11.53 vs. 14), and a

higher R2 score of 0.74 compared to 0.62 for LSTM.

These results suggest that the GRU model is more

effective in predicting air pollution levels, particularly
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for PM2.5 concentrations in Kota city. Table 1 below

shows the comparative performance of both the

models. Figure 5 shows a Taylor diagram, with the

black point marking the reference point that

represents ideal model performance. The blue point

corresponds to the LSTM model, and the green point

corresponds to the GRU model.. The closer a point is

Model

MSE RMSE MAE R2

PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5

LSTM 1877.50 451.29 43.33 21.24 23.96 14.00 0.62 0.62

GRU 1751.98 314.56 41.85 17.73 23.49 11.53 0.65 0.74

Table 1

Comparative 

performance 

of models

to the reference, the better the model's performance.

In this diagram, the GRU model (green point) is

positioned closer to the reference point than the

LSTM model (blue point), indicating that the GRU

model achieves superior performance in terms of

correlation, standard deviation, and RMSE.

Figure 5

Taylor Diagram 

for PM10 & PM2.5

PM10
PM2.5

Training & validation graphs

The GRU training & validation MSE’s for PM10 are
shown in Figure 6. It shows the training and

validation mean squared errors (MSE) of a machine

Figure 6

Training and validation of gated 

recurrent unit for PM10.
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learning model over 100 training epochs. Initially, the

validation MSE of GRU is at 2124.47 and over the

course of the training, it decreases and reaches

1751.98 by the 100th epoch. The GRU training &

validation MSE’s of PM2.5 are shown in Figure-7. It

shows the training and validation mean squared errors

(MSE) of a machine learning model over 100 training

epochs. Initially, the validation MSE of GRU is at

436.48 and over the course of the training, it

decreases and reaches 314.56 by the 100th epoch.
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Figure 7. Training and validation of gated recurrent unit for PM2.5.

From Figures 6 & 7, it is concluded that the results of

the GRU model are better having the lowest scores of

MSE being 1751.98 and 314.56 for PM10 and PM2.5

respectively. In comparing the performance of the

GRU model for predicting PM2.5 concentrations from

the current study with that reported by previous

study, several key differences are evident (Huang et al.

2021). The current study's GRU model exhibits a

Root Mean Square Error (RMSE) of 17.73, which is

lower than the RMSE of 20.309 ± 0.053 reported by

previous study. This suggests that the GRU model in

the current study achieves better average prediction

accuracy, as it has a lower magnitude of error.

However, the Mean Absolute Error (MAE) for the

current study’s GRU model is 23.49, significantly

higher than the MAE of 11.039 ± 0.049 reported by

previous study. This indicates that, despite the lower

RMSE, the current model tends to produce larger

deviations from the actual values in some cases.

Additionally, the R² value for the current study’s

GRU model is 0.65, which is notably lower than the

R² value of 0.9531 ± 0.0002 reported by previous

study. This disparity highlights that previous study's

GRU model explains a much larger proportion of the

variance in PM2.5 concentrations, demonstrating a

superior overall fit and explanatory power. Overall,

while the current study’s GRU model shows

improved prediction accuracy in terms of RMSE, it

does not perform as well in explaining variability or

Figure 8. Original v/s Predicted PM10 & PM2.5 using GRU
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minimizing absolute errors compared to previous

study model. These comparisons underscore both the

strengths and limitations of the current GRU model

relative to established benchmarks in the literature.

Prediction of PM10 and PM2.5

Figure 8 illustrates the performance of a predictive

model for PM10 & PM2.5 levels, comparing actual

values (green colour) with predicted values (orange

colour) over data points. The x-axis represents the

number of testing values and y-axis represents the

levels of PM10 and PM2.5. The close alignment

between the two colored lines indicates that the

model accurately predicts PM10 and PM2.5 con-

centrations, effectively capturing overall trends and

significant peaks.

Conclusions

The study conducts a correlation analysis and model

performance evaluation to predict air pollution levels

in Kota City, focusing on PM10 and PM2.5 concentra-

tions. The correlation analysis reveals strong relation-

ships between various pollutants, with NOx and NO2

showing a high positive correlation (r=0.87), indica-

ting that NO2 is a significant component of NOx

emissions. PM2.5 and PM10 are positively correlated

with CO (r=0.47 and r=0.43, respectively), suggesting

that sources of CO, such as vehicle exhaust, also

contribute to particulate matter pollution. The perfor-

mance evaluation between Long Short-Term Memory

(LSTM) and Gated Recurrent Unit (GRU) models

demonstrates that the GRU model outperforms

LSTM in predicting both PM10 and PM2.5 concentra-

tions. The GRU model achieves lower MSE, RMSE,

and MAE values and a higher R2 score for both pollu-

tants, indicating better accuracy and reliability. Specifi-

cally, the GRU model attains MSE values of 1751.98

for PM10 and 314.56 for PM2.5, with corresponding R2

scores of 0.65 and 0.74, respectively. The training and

validation graphs further confirm the GRU model's

superior performance, with a steady decrease in MSE

over 100 epochs, reaching the lowest scores for both

PM10 and PM2.5. Additionally, the prediction results

show a close alignment between the predicted and

actual values, demonstrating the model's ability to

accurately capture the trends and peaks in pollutant

concentrations. In conclusion, the GRU model

proves to be a more effective tool for predicting air

pollution levels in Kota, making it a valuable asset in

air quality management and mitigation strategies.
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