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Abstract

Air quality is a critical indicator of environmental health, directly impacting human well-being and ecological

stability. Rapid urbanization and industrialization have recently exacerbated air pollution, necessitating robust

monitoring and predictive frameworks. This study investigates air quality trends in Kota city of Rajasthan, India

and using data from 2017 to 2023. Machine learning models, including linear regression (LR), random forest (RF),

decision tree (DT), support vector regressor (SVR), and K-nearest neighbors (KNN), were employed to analyze

predict air quality index (AQI) values based on key pollutants such as PM2.5, PM10, NO, NO2, NOx, NH3, SO2,

CO, Ozone, Benzene, Ethyl-Benzene, m & p-Xylene considering the effects of meteorological factors like relative

humidity (RH), wind speed (WS), wind directions (WD), and barometric pressure (BP). Among these, the

decision tree regressor shows almost perfect fit on the training set (R2 score 0.9999) and excellent test

performance (R2 score 0.9991), suggesting a very accurate prediction model. However, it exhibits potential

overfitting, limiting its generalization capabilities. On the other hand, the random forest regressor provides a

balance of accuracy and robustness, achieving an R² score of 0.9831, making it the preferred model for reliable

predictions. The study delves into pollutant contributions, evaluates model performances, and explores actionable

insights for policymakers. By leveraging machine learning approaches, the study aims to provide a comprehensive

framework for analyzing air quality trends and supporting decision-making processes.
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Introduction

Air pollution remains one of the most pressing global

challenges, with profound implications for human

health, ecosystems, and the climate. According to the

World Health Organization, ambient air pollution is

responsible for approximately 4.2 million premature

deaths annually (WHO, 2018). This stark statistic

underscores the urgent need for effective air quality

management strategies across the globe. In India, the

introduction of the National Clean Air Programme

(NCAP) in 2019 marked a significant step toward

tackling urban air pollution, setting ambitious goals to

reduce particulate matter (PM10 and PM2.5) concen-

trations by 20-30% by 2024 compared to 2017 levels

(NCAP, 2019; Sharma et al., 2024). The city of Kota

is included in this program, where rapid urbanization,

industrial expansion, and vehicular emissions have led

to concerning air quality trends. Kota, a growing

industrial and educational hub in Rajasthan, epito-

mizes the challenges faced by rapidly urbanizing cities

in India. Industrial activities, construction projects,

and a surge in vehicular traffic have contributed to

elevated levels of pollutants such as PM10, PM2.5, and

nitrogen dioxide (NO2). As the city grapples with

these challenges, leveraging advanced technologies,

particularly machine learning (ML) and artificial

intelligence (AI), offers promising solutions for

monitoring and mitigating air pollution. Recent

studies have highlighted the transformative potential

of ML and AI in air quality monitoring and pre-

diction. These technologies enable the analysis of lar-
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ge datasets, including pollution metrics and meteoro-

logical variables, to provide accurate forecasts and

actionable insights. A variety of ML and deep learning

(DL) models have been employed, each offering

unique strengths and applications. The use of ML

techniques was recently explored in a study including

AdaBoost, support vector regression (SVR), random

forest (RF), and K-nearest neighbors (KNN), alongside

DL models like the multi-layer perceptron (MLP)

regressor and long short-term memory (LSTM)

networks. The study focused on optimizing features to

enhance the prediction of pollutants such as PM2.5,

PM10, and ozone (O3). Among these, LSTM demon-

strated exceptional accuracy, achieving R² values as

high as 0.998, thereby outperforming other models

(Neo et al., 2023). AQNet, a multimodal AI model was

introduced that integrates satellite data from the

European Space Agency's Copernicus project with

ground-level pollution measurements. This approach

improved the prediction of NO2, O3, and PM10

concentrations, emphasizing the importance of urban

and traffic features in influencing pollution levels

(Rowley & Karakuş, 2023).A hybrid SVR-GWO (Gray

Wolf Optimizer) model was developed to predict

aerosol optical depth (AOD) in Pakistan, demon-

strating improved accuracy over standalone models.

Similarly, Gupta et al. (2023) compared ML algorithms

like RF regression, CatBoost, and SVR for predicting

the Air Quality Index (AQI) in Indian cities, identifying

RF and CatBoost as the most reliable models for AQI

prediction (Zaheer et al., 2023). Other studies have

showcased the effectiveness of time-series models like

LSTM and GRU in forecasting pollutant concen-

trations. These models captured temporal patterns in

pollution data, offering valuable tools for proactive air

quality management (Hsieh et al., 2022; Cican et al.,

2023). Globally, researchers have employed ML and AI

to address region-specific air quality challenges. In

Visakhapatnam, it was found that the CatBoost model

excelled in AQI prediction, achieving an impressive R²

of 0.9998 (Ravindiran et al., 2023). Similarly, studies in

Jaipur identified PM10 as the major pollutant post-

COVID-19 lockdown, underscoring the persistent air

quality challenges in urban areas (Ruhela et al., 2022).

Remote sensing data was combined with RF models to

analyze air pollution in Egypt, highlighting the impact

of road proximity and temperature on air quality (Abu

El-Magd et al., 2023). In China, a boosted regression

tree (BRT) model was used to explore the relationship

between PM2.5 levels and land use patterns, revealing

significant seasonal variations (Liang et al., 2020). Inspi-

red by these advancements, the present research focu-

ses on applying ML techniques to analyze air quality

trends in Kota city. By integrating statistical and ML

methods, this study aims to bridge the gap between

traditional monitoring approaches and modern pre-

dictive frameworks. The integration of ML and AI into

air quality monitoring systems represents a paradigm

shift in environmental management. By providing

accurate, real-time predictions, these technologies em-

power stakeholders to make informed decisions,

mitigating the adverse effects of air pollution on health

and the environment. For cities like Kota, where

traditional monitoring methods may fall short, embra-

cing innovative approaches is not just an opportunity,

it is a necessity.

Research Methodology

The research methodology for AQI prediction follo-

wed a structured, multi-phase approach as depicted in

Figure 1, ensuring a systematic workflow from data

preparation to model evaluation.

Data Source

The dataset for this study was sourced from the Raja-

sthan State Pollution Control Board (RSPCB). It inclu-

des comprehensive records of pollutant concentrations

such as PM2.5, PM10, NO, NO₂, NOx, NH3, SO2, CO,

ozone, benzene, ethyl-benzene, and m & p-xylene, as

well as meteorological parameters like relative humidity

(RH), wind speed (WS), wind direction (WD), and

Figure 1. Flowchart showing research methodology
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barometric pressure (BP). These records, spanning

from 2017 to 2023, provide a robust temporal dataset

for analyzing air quality trends in Kota city, Rajasthan.

Data Pre-processing

To ensure the quality and consistency of the dataset, a

structured preprocessing workflow was employed:

Cleaning and Formatting, Unnecessary columns

were removed, and missing values were handled

appropriately. Depending on the nature of the missing

data, strategies such as mean imputation or

interpolation were applied to preserve the dataset’s

integrity.

Exploratory Data Analysis (EDA): Exploratory

data analysis included the following steps.

Outlier Detection. Statistical methods and visual tools

like box plots were used to identify and handle ano-

malies in the data.

Skewness Identification. The skewness of data

distributions was analyzed to understand the need for

transformation or normalization.

Normalization. To standardize feature values, norma-

lization techniques were applied, ensuring that all

variables contributed equally to model performance.

Data Splitting with Stratification

The dataset was stratified into bins based on AQI

levels to maintain a balanced distribution of different

AQI categories. This stratification ensured that both

training and test datasets adequately represented the

range of air quality conditions. The data was then split

into training (80%) and testing (20%) subsets.

Model Training

Five machine learning models were selected to capture

diverse data patterns and relationships.

Linear regression (LR). A baseline model to

understand linear dependencies in the data.

Random forest regressor (RF). A robust ensemble

model leveraging decision tree to capture complex

patterns.

Decision tree regressor (DT). A tree-based model

that splits data iteratively for prediction.

Support vector regressor (SVR). A model designed

to minimize prediction error by finding the optimal

hyperplane in feature space.

K-nearest neighbors (KNN). A non-parametric

model that predicts based on the closest training

samples in feature space.

Model validation

The trained models were evaluated using the testing

dataset to assess their ability to generalize predictions.

Validation metrics ensured that the models performed

reliably under unseen conditions.

Performance evaluation and comparison

The performance of the machine learning models was

assessed using the following metrics:

Mean absolute error (MAE). Measures the average

magnitude of errors in predictions, without considering

their direction.

Mean squared error (MSE). Highlights larger errors

by squaring the differences between predicted and

actual values.

Root mean squared error (RMSE). The square root

of MSE, providing a scale-sensitive measure of predi-

ction error.

R² Score. Indicates the proportion of variance in the

dependent variable explained by the model.

These metrics provided a comprehensive understand-

ding of each model’s accuracy and reliability in pre-

dicting AQI values.

Results and Discussion

The exploratory data analysis (EDA), which allowed us

to visually inspect the distribution and outliers for each

feature in the dataset in a structured manner, is shown

in Figure 2. It consists of a series of “violin plots” for

multiple variables related to air pollution and meteo-

rological parameters. The violin plot combines a box

plot and a kernel density plot. The “red dots” repre-

sent the individual data points (scatter plot overlay) and

the “blue shapes” represent the distribution of the data

(density plot), showing how the data is spread across

the range of values. The “box plot inside” the violin

(horizontal lines) shows key statistics and the central li-

ne is the “median”. The edges of the box represent the

“inter-quartile range (IQR)”, which captures the middle

50% of the data. The whiskers show the range of data

excluding outliers.

Explanation of variables and graphs

Air pollutants

PM2.5 and PM10 (µg/m³). These plots show the

distribution of particulate matter concentrations. The

spread indicates some extreme outliers, possibly during

pollution events like festivals or crop burning.

NO, NO₂, NOx (µg/m³ or ppb).These represent
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Figure 2. Exploratory data analysis of  air pollution and meteorological variables
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Figure 2 (segue). Exploratory data analysis of  air pollution and meteorological variables
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nitrogen oxides. Their distributions are skewed, with

most values concentrated at lower ranges but some

outliers at high concentrations.

NH₃ (µg/m³). Shows ammonia concentrations. The

distribution appears slightly skewed with outliers at

higher values.

SO₂ (µg/m³). Sulfur dioxide levels are highly concen-

trated in a very narrow range, with almost no signify-

cant variability.

CO (mg/m³). The distribution of carbon monoxide

shows a spread with some prominent outliers.

Ozone (µg/m³). The distribution of ozone levels

shows moderate spread and no extreme outliers.

Benzene, ethyl-benzene, m & p-xylene (µg/m³).
These volatile organic compounds show distributions

with notable skewness and some outliers.

Meteorological parameters

Relative humidity (RH, %). The data shows a relati-

vely uniform distribution with no significant outliers.

Wind speed (WS, m/s). Wind speed distribution is

skewed, with most values concentrated at lower ranges.

Wind direction (WD, degrees). Wind direction is

evenly distributed, as expected in many datasets with

varying wind patterns.

Barometric pressure (BP, mmHg). Barometric

pressure data shows a tight distribution, indicating low

variability over time.

Based on the Figure 2, it can be inferred that many

pollutants (e.g., PM2.5, PM10, NOx, CO, and benzene)

exhibit significant outliers, suggesting episodic high

pollution events. SO₂ shows almost no variability,

which may imply a consistent source or limited

emission variability in the area. Meteorological

parameters like wind direction and pressure are more

stable, while relative humidity and wind speed show

moderate variability.

Performance of machine learning models

Linear regression. The linear regression model

demonstrates strong training performance, with

predicted values closely matching actual ones. Metrics,

including MAE of 17.98 and R² of 0.87, indicate

effective learning of patterns and a good fit for the

training dataset. The testing data shows a similar trend

but with greater dispersion at higher values, reflecting

prediction errors. Metrics (MAE 18.82, R² 0.86)

indicate good generalization but slightly reduced

performance compared to the training dataset. Figures

3(a) and 3(b) show the linear regression results on

training v/s testing datasets.

Figure 3. Linear regression results of actual v/s predicted value

In conclusion, the linear regression model effectively

learns patterns in the training dataset, achieving a

strong fit. While it generalizes well to unseen data,

slight performance drops highlight opportunities for

refinement to improve prediction accuracy on higher

values.

Random forest regressor. The random forest regressor

demonstrates exceptional accuracy and generalization, with

closely aligned training and testing metrics. On the training

set, it achieves an MAE of 6.66, MSE of 79.95, RMSE of

8.94, and an R² score of 0.98, reflecting minimal errors and a

strong fit. On the testing set, it performs slightly better with

an MAE of 6.53, MSE of 69.90, RMSE of 8.36, and an R²

score of 0.98, indicating effective generalization to unseen

data. Figures 4(a) and 4(b) show the random forest

regression results on training v/s testing datasets. The

minimal difference in error metrics and consistently high R²

scores underscore this model’s robustness, reliability, and

capability to capture patterns while avoiding overfitting.

(a)

(b)
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(a)
(b)

Decision tree regressor. The decision tree regressor

demonstrates exceptional performance on the training

dataset, with an MAE of 0.2464, MSE of 0.5811,

RMSE of 0.7623, and an R² score of 0.9999, indicating

near-perfect fit. On the test dataset, performance

slightly declines but remains highly accurate, with an

MAE of 0.7070, MSE of 3.5985, RMSE of 1.8970, and

(a) (b)

Support vector regressor. The support vector regres-

sor (SVR) performs well on the training data, with an

MAE of 2.4066, MSE of 36.9748, RMSE of 6.0807,

and an R² score of 0.9916, indicating a strong fit.

However, on the test data, performance declines, with

an MAE of 6.9799, MSE of 163.4713, RMSE of

12.7856, and an R² score of 0.9605, suggesting a loss in

accuracy and generalization. Figure 6(a) and 6(b) show

the support vector regressor results on training v/s

testing datasets. The increase in errors and drop in R²

suggest potential overfitting, as the model struggles to

an R² score of 0.9991. Figures 5(a) and 5(b) show the

decision tree results on training v/s testing datasets

The increase in errors on unseen data suggests mild

overfitting, as the model performs exceptionally well

on the training set but experiences a slight drop in

generalization. Overall, it is a highly accurate and

effective predictive tool.

generalize to new data despite high accuracy on the

training set.

K-nearest neighbors. The KNN model shows strong

performance on the training dataset, with an MAE of

10.7026, MSE of 279.7702, RMSE of 16.7263, and an

R² score of 0.9361. On the test dataset, the MAE

increases to 15.9931, MSE to 603.7686, RMSE to

24.5717, and R² drops to 0.8542, indicating slightly

reduced accuracy and higher errors. This performance

gap suggests potential over fitting, as the model fits the

EQA 71 (2026): 19 - 28M. Sharma, M.P. Choudhary, A.K. Mathur
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Figure 4. Random forest regression results of actual v/s predicted values

Figure 5. Decision tree regression results of actual v/s predicted values
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(a)
(b)

training data better than the test data. Despite this, the

relatively high R² score for both datasets shows the

model maintains good overall predictive ability. Figures

7(a) and 7(b) show the K-nearest neighbors results on

training v/s testing datasets.

(a) (b)

(a) (b)

Model Dataset MAE MSE RMSE R² Score

Linear regression (LR)
Training 17.9764 560.6084 23.6772 0.8719

Test 18.8163 567.5179 23.8226 0.8629

Random forest regressor (RF)
Training 6.6575 79.9481 8.9414 0.9817

Test 6.5289 69.9036 8.3608 0.9831

Decision tree regressor (DT)
Training 0.2464 0.5811 0.7623 0.9999

Test 0.7070 3.5985 1.8970 0.9991

Support vector regressor (SVR)
Training 2.4066 36.9748 6.0807 0.9916

Test 6.9799 163.4713 12.7856 0.9605

K-nearest neighbors (KNN)
Training 10.7026 279.7702 16.7263 0.9361

Test 15.9931 603.7686 24.5717 0.8542

Table 1

Evaluation metrics for each

model on training and test

datasets

The overall performance of each model evaluated on

the training and test datasets is represented in Table 1.

The Table 1 shows that the decision tree regressor

offers near-perfect accuracy but could be overfitting

due to its complexity. Random forest regressor is the

most balanced, with consistently high accuracy across

EQA 71 (2026): 19 - 28M. Sharma, M.P. Choudhary, A.K. Mathur
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Figure 6. Support vector regressor results of actual v/s predicted values

Figure 7. K-nearest neighbors results of actual v/s predicted values
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both training and test datasets. While the SVR

performs well on the training set, its generalization to

the test set isn't as strong. KNN and linear regression

are less accurate compared to other models. Random

forest regressor is likely the best choice if we are

optimizing for generalization and consistent perfor-

mance. However, if near-perfect accuracy is critical,

decision tree regressor might be considered, keeping in

mind potential overfitting risks.

Discussion on variable influence

The predictive modeling results underscore the relative

importance of air pollutants and meteorological para-

meters in determining AQI levels. Across all models,

pollutant concentrations such as PM2.5, PM10, NO2,

and benzene showed higher influence on AQI predict-

tion compared to meteorological factors. The decision

tree and random forest models, which offer insight into

variable importance, consistently ranked PM2.5 and

PM10 among the top predictors highlighting the domi-

nant role of particulate matter in air quality degra-

dation. Nitrogen-based pollutants (NO, NO2, NOx)

and benzene also emerged as strong contributors, likely

reflecting vehicular and industrial emissions in Kota. In

contrast, meteorological variables like wind direction

and barometric pressure exhibited lower importance,

although wind speed and relative humidity showed

moderate influence, potentially by modulating pollutant

dispersion and concentration levels. Notably, the

random forest model's robustness allowed a clearer

interpretation of variable ranking, with PM2.5 often

emerging as the most influential single factor. This

suggests that air quality management strategies should

prioritize particulate emission controls. The findings

affirm that while meteorological conditions shape

pollutant behavior, the core drivers of AQI variability

in Kota are anthropogenic emissions, primarily from

transport, construction, and industry.

Conclusions

This study successfully applied machine learning mo-

dels to analyze and predict air quality trends in Kota

city, Rajasthan, using pollutant and meteorological data

spanning from 2017 to 2023. Five models namely linear

regression, random forest regressor, decision tree re-

gressor, support vector regressor, and K-nearest neigh-

bors were evaluated for their predictive capabilities

based on metrics such as MAE, MSE, RMSE, and R²

score. Among these models, the decision tree regressor

(DTR) achieved the best performance, with the lowest

MAE, MSE, and RMSE with an R² score of 0.9981,

showcasing its ability to accurately capture the

relationships between features. The only issue with

DTR could be overfitting due to its complexity. On the

other hand, random forest regressor (RFR) is the most

balanced, with consistently high accuracy across both

training and test datasets. By integrating pollutants like

PM2.5, PM10, NO2, and benzene with meteoro-logical

parameters such as wind speed, wind direction, and

humidity, the models provided actionable insights into

pollutant contributions and their effects on air quality.

These findings offer significant value to policy-makers,

enabling data-driven decision-making and the

assessment of initiatives like the national clean air

programme (NCAP).
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