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Abstract

With the rapid pace of urbanization, the Urban Heat Island (UHI) effect has emerged as a significant obstacle to

sustainable urban living, characterized by elevated temperatures in cities relative to surrounding rural areas. This

article explores the intricate mechanisms driving UHI development, emphasizing key contributors such as the

reduction of green spaces, heat-retaining construction materials, compact city layouts, and anthropogenic heat

emissions. Meteorological factors further compound UHI intensity, underlining its multifaceted nature. The

consequences are far-reaching ranging from increased energy demands and diminished air quality to elevated

greenhouse gas emissions and negative impacts on public health and thermal comfort. Climate change

exacerbates these effects by altering local weather dynamics and intensifying heat stress. A comprehensive

assessment of detection techniques is provided, alongside a diverse set of mitigation approaches. These include

nature-based interventions such as green roofs, vertical gardens, urban forestry, and blue infrastructure, as well as

technological innovations like reflective roofs and permeable pavements. The article also evaluates the complex

role of solar panels, which can both alleviate and contribute to heat accumulation in urban settings. This work

contributes to the creation of heat-resilient cities and promotes a shift from concrete-dominated landscapes

toward cooler, greener, and more sustainable urban environments.
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(areas relative to their surroundings. However, these

elevated temperatures are accompanied by changes in

precipitation patterns, climate extremes, and the

effects of air pollution as well. Surface and

Atmospheric UHI SUHI and AU HI) are two types

of heat islands in urban areas (Van Hove et al., 2011).

SUHI results from elevated surface temperatures,

with day and night variations ranging from 10°C to

15°C during the day and 5°C to 10°C at night,

especially in summer (Martin et al., 2015). AUHI has

two layers: the urban canopy layer (UCL) close to the

ground and the urban boun-dary layer (UBL) above it,

forming a heat "dome" (Sol-tani and Sharifi, 2017)

that spreads out as a "plume" (Oke, 1982). AUHI is

most noticeable at night, with temperature differences

of 1°C to 3°C. Surface temperatures are detected via

thermal infrared remote sensing, while air

temperatures are recorded through weather stations

(Vujovic et al., 2021). This study examines the

Introduction

Urbanization and climate change are two of the biggest

environmental issues facing the world in the twenty-

first century. Cities have caused unusual environmental

alterations at regional to global scales, despite making

up a very small portion of the world's land surface (a

continental average of 0.5%) (Qiu et al., 2020). Urban

areas undergo landscape changes as they grow. Roads,

buildings, and other infrastructure take the place of

open space and vegetation. Typically, areas that were

once moist and permeable turn dry and impermeable.

This transformation leads to the formation of urban

heat islands (UHIs) (Figure 1) (EPA, 2017). Buildings

and roads in urban areas alter the local climate by

affecting radiation, heat, and water balances. As a

result, cities' thermal dynamics and solar radiation

differ greatly from those of the nearby rural areas.

According to (Oke, 1982; Ward et al., 2016), the UHI

effect is the result of higher temperatures in urban

Figure 1. Urban Heat Island development process
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urbanization and climate change mechanics underlying

the UHI effect, reviews ways to mitigate it, and assesses

its effects on urban environments. The study intends to

improve knowledge of UHI dynamics and provide

guidance for sustainable urban development practices

by combining the body of existing literature with fresh

discoveries. In the end, it aims to offer insights that

support more sustainable and healthy urban ecosystems

in the face of rapidly increasing

Exploring the dynamics of urban Heat Island

creation

Urban green cover depletion

Vegetation cover is essential for environmental sustai-

nability in urban areas, supporting soil conservation,

water regulation, temperature control, and biodiversity

(Waseem and Khayyam, 2019). However, urbanization

and land-use changes have reduced vegetation, raising

carbon emissions, Land surface temperature (LST), and

disaster risks, thereby contributing to climate change

and threatening urban ecosystems and residents (Al

Rakib et al., 2020). Empirical studies illustrate this

impact. Kafy et al. (2022) reported that a 9% reduction

in vegetation cover over a 25-year period led to an

11°C rise in average temperature, while Rahaman et al.

(2022) found that a 17% decrease in forest cover over

the same period resulted in a 13°C increase in tempera-

ture. Building on this evidence, Singh and Kapoor,

(2025) investigated UHI formation in Jhansi, India

(2001–2021) using GIS-based remote sensing and

meteorological data. Built-up areas increased from 7%

to 26%, largely replacing green and natural surfaces,

leading to a significant rise in land surface temperatures

(LST), especially in urban cores. UHI intensity

increased by 1.51°C, underscoring the strong link

between urban expansion, vegetation loss, and

localized warming. The study highlights vegetation's

vital role in regulating urban heat. In rural areas,

vegetation cools the environment through shade and

evapotranspiration (Locke et al., 2024). In contrast,

urbanization replaces greenery with heat-retaining

impervious surfaces, reducing natural cooling and

increasing urban temperatures, thereby intensifying the

UHI effect (Akbari et al., 2001). This process is

illustrated in Figure 2.

Figure 1. Urban Heat Island: the role of surface permeability.

(Highly developed urban areas with more non-permeable surfaces have less surface moisture for evapotranspiration than

natural ground cover, leading to higher surface and air temperatures.)

Attributes of urban construction materials

Urban surfaces can be 20-30ºC hotter than the air due

to solar absorption, especially in hot climates. This

stored heat is released at night, worsening the UHI

effect (Di Maria et al., 2013). The thermal behaviour

of these urban materials depends on the combined ef-
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fect of various properties like thermal conductivity,

specific heat capacity, density, albedo, and thermal

emissivity, rather than any single property (Sreedhar

and Biligiri, 2016). Past simulations and studies show

that a material's performance under the sun is linked to

its solar reflectance (ability to reflect sunlight) and

infrared emittance (ability to release absorbed heat).

Low values of either reflectance or emittance mean the

material is not cool (Radhi et al., 2014). Urban areas

absorb more solar radiation due to lower albedo

materials like paving and roofing (Santamouris et al.,

2007)), and with urban materials like steel, stone and

asphalt concrete (AC) having higher heat capacities

than rural materials, cities store more heat, contributing

to UHIs (Mohajerani et al., 2017). Among these

materials, AC stands out as a major contributor due to

its low solar reflectance and high heat retention, with

surface temperatures often exceeding 60°C on hot days,

further amplifying urban thermal stress.

Urban layout

Urban layout, characterized by the height and spacing

of buildings, significantly impacts the formation of heat

islands (Yang et al., 2021; Johansson, 2006) by altering

wind patterns, enhancing energy absorption, and

affecting heat dissipation. Because of the canyon effect

and building materials, urban areas-especially those

with higher buildings-absorb and reradiate a lot of solar

radiation (Alobaydi et al., 2016). By changing the

number of exposed surfaces, building density

influences the UHI effect. Urban canyon shape also

affects natural ventilation system airflow and provides

people with shaded walkways. A metric of urban

geometry is the aspect ratio, which is the ratio of street

width to building height (Perini and Magliocco, 2014;

Alobaydi et al., 2016). According to Bakarman and

Chang (2015); Ren and Stroud (2022) the intensity of

the UHI impact increases when the height-to-width

(H/W) ratio of urban canyons diminishes.

Human-induced heat emissions

Human-induced heat emissions in cities, from sources

such as building heating and cooling, manufacturing,

transportation, and lighting, contribute to the UHI

effect by warming the urban atmosphere through

conduction, convection, and radiation, with variations

influenced by latitude and season (Shahmohamadi et al.,

2011). Heat from air conditioning systems can increase

metropolitan temperatures by 0.2-2.5 °C (Wen and

Lian, 2009; Salamanca et al., 2012; de Munck et al.,

2013). Furthermore, increased traffic and industrial
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activity generate a lot of heat, making industrial

regions much warmer than their surroundings (Assaf

and Assaad, 2023; Zhao et al., 2024). Supporting this,

Raj et al. (2020) analyzed satellite data from 44 major

Indian cities (2000–2017) and found persistent

increases in nighttime Surface UHI Intensity (SUHII)

across all seasons. This rise was closely linked to rapid

urbanization, built-up expansion, artificial lighting,

and aerosol emissions, which together reduced

vegetation cover and altered land surfaces further

intensifying urban warming. These findings

emphasize the urgent need for climate-sensitive urban

planning and mitigation strategies to counteract

anthropogenic heat stress.

Meteorological drivers

Cloud cover and wind speed are key meteorological

factors in UHI development; a decrease in both

allows more solar energy to reach city surfaces and

reduces heat convection, leading to stronger UHI

effects (He, 2018; Santamouris and Kolokotsa, 2016).

Conversely, higher wind speeds and increased cloud

cover can mitigate UHI formation by dispersing and

reflecting heat, thus influencing radiative and

turbulent energy exchanges (Zheng et al., 2023).

Supporting this, Huang et al. (2020) analyzed long-

term meteorological data (1979–2013) in Shanghai

and found that nocturnal UHI intensity (UHII) was

highest in autumn and winter and lowest in summer.

Conditions favoring stronger UHIs included calm

winds, clear skies, low humidity, and minimal

precipitation, while higher atmospheric pres-sure also

correlated positively with UHII. Similarly, Lo-

koshchenko and Alekseeva (2023) examined UHI pat-

terns in Moscow, reporting average and peak inten-

sities of 0.9°C and 1.9°C, respectively, with extreme

values reaching 11–12°C under strong anticyclonic

conditions. Their findings highlighted low cloud

cover, large diurnal temperature ranges, and surface

tempera-tures as the most influential factors, with low

cloudi-ness showing a strong negative correlation (r =

−0.67). Wind speed, total cloudiness, and humidity

also in-fluenced UHI, with a combined correlation of

0.76–0.82. Additionally, UHI intensity decreased

significantly with wind speeds over 10 m/s and cloud

cover above 50%.

In Salamanca, Spain, Alonso et al. (2007) also

confirmed the presence of a nocturnal UHI, finding

that wind speeds above 6 m/s suppressed UHI

development, while high cloud cover enhanced it,

particularly at night. They also observed atmospheric
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pressure variations affecting UHI via atmospheric

stability. Notably, the study recorded microclimatic

impacts, such as earlier spring onset in urban areas

compared to rural surroundings. Collectively, these

studies show that key meteorological factors like wind,

cloud cover, humidity, and pressure strongly influence

UHI intensity and patterns.

Environmental and social impacts

A catalyst for higher energy use

Urban areas account for approximately 75% of global

energy consumption, with residential and commercial

buildings using a substantial portion mainly in the form

of electricity (Habitat, 2023). Rising ambient tempera-

tures further intensify this demand. Studies show that

for each 1°C increase in temperature, energy demand

rises by 2–4% during summer (Akbari et al., 2001),

while peak electricity demand increases by 0.45% to

4.6% per degree (Santamouris et al., 2015). The UHI

effect contributes significantly to this rise by intensi-

fying urban temperatures, especially during warm

seasons. UHI not only increases cooling energy de-

mand but can also lead to decreases in winter heating

needs, creating a dual effect (Phelan et al., 2015). For

instance, Li et al. (2019) reported that UHIs could lead

to a 19.0% increase in cooling energy use and an 18.7%

decrease in heating energy use. Similarly, Kumari et al.

(2021) observed an 11.4% average rise in annual

electricity consumption across eight districts in Delhi

(April 2012–March 2017) due to UHI formation. In a

more localized analysis, Liu et al. (2025) analyzed

neighborhood-scale temperature variations in a high-

density subtropical city and found that urban areas

consumed up to five times more cooling energy than

rural ones. A 1000 °C·h increase in daytime UHI

degree hours led to a 4.7 kWh/m² rise in cooling

energy use, while a 1°C rise in maximum temperature

increased peak load by 1.02 kW, highlighting the

importance of high-resolution UHI data for energy

planning. Complementing this,, Hashemi et al. (2025)

used a microclimate-adjusted Urban Building Energy

Modeling (UBEM) framework to project the combined

effects of UHI and climate change on building energy

use in Des Moines, Iowa. Their findings suggest UHI

intensity will rise from 0.55°C to 0.63°C by 2080,

increasing cooling demand by 91% by 2050 and 154%

by 2080, with UHI alone contributing 2.3%–6.2% to

the rise. While heating demand may decrease by up to

40.1%, the long-term effectiveness of insulation in

reducing heating loads diminishes, underscoring the ne-

ed for adaptive building strategies and UHI mitigation.

Collectively, these studies highlight how UHI signi-

ficantly amplifies urban energy consumption, especially

in warmer seasons, making it a critical factor in urban

energy planning and climate resilience.

Urban heat-pollution nexus: impacts on air quality

A variety of studies have indicated a relationship

between the UHI phenomenon and air pollution

(Wang et al., 2021; Li et al., 2018; Mathew et al., 2025;

Nasar-u-Minallah et al., 2025; Plocoste et al., 2014)

Mathew and Arunab (2025) investigated the correlation

between UHI and multiple air pollutants (CO, NO₂,

HCHO, SO₂, O₃, and aerosols) in Bangalore using

satellite-based datasets (TROPOMI and MODIS) for

the period 2019–2022. Their study found a strong

positive correlation between UHI indicators and most

pollutants, except SO₂, which showed a negative

correlation. A weighted Urban Pollution Island (UPI)

index developed using Fuzzy AHP, along with spatial

analysis of thermal risk zones, revealed that high-risk

zones (HRZs) had significantly elevated pollutant

concentrations and were on average 2.2 °C warmer

than low-risk zones (LRZs), emphasizing the dual

burden of heat and pollution in densely urbanized

regions. In a tropical context, Swamy et al. (2017)

explored UHI and air quality dynamics in Chennai

using the Envi-Met model. They found that

commercial and residential areas exhibited higher air

temperatures than urban background zones, with UHI

effects exacerbated by wind speeds between 0.2 and 5

m/s, which altered the atmospheric boundary layer

(ABL) and mixing heights. Importantly, the lowest

nocturnal mixing height (60 m) recorded in residential

areas coincided with peak ozone (O₃) concentrations,

suggesting that UHI may enhance secondary pollutant

formation by influencing vertical mixing and

dispersion. Wang et al. (2021) further confirmed the

linkage in the Yangtze River Delta (YRD) region. Their

study showed a positive correlation between daytime

UHI intensity and ozone concentrations, while other

pollutants like PM₂.₅, PM₁₀, NO₂, and SO₂ were

negatively correlated. Inland cities showed worse air

quality than coastal cities, with LST emerging as the

most influential factor driving both UHI and pollutant

distribution, followed by vegetation cover and topogra-

phy. Similarly, Li et al. (2018) examined the interaction

between UHI and Urban Pollution Island (UPI) effects

in Berlin using a combination of in-situ and remote

sensing observations. They found spatial alignment bet-

ween elevated temperatures and pollution levels, and a
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negative nighttime correlation (r = –0.31) between

atmospheric UHI (AUHI) and near-surface pollution

(NSUPI), indicating that enhanced turbulence from

UHI can reduce pollutant concentrations near the

surface. However, aerosols also contributed to enhan-

ced nighttime SUHI (~12%) by increasing atmospheric

longwave radiation. In the Paris region, Sarrat et al.

(2006) used a coupled meteorological-chemical model

(Meso-NHC with TEB) to simulate urban effects.

Their results confirmed that urban land cover signi-

ficantly altered local meteorology, deepening the noc-

turnal UHI and changing the structure of the boundary

layer. This, in turn, influenced the spatial distribution of

both primary and secondary pollutants, particularly

ozone and NOx, due to increased turbulence and

vertical mixing. Overall, these studies underscore the

mutual reinforcement between UHI and air pollution,

where urban warming can amplify pollutant concen-

trations and vice versa. This bidirectional relationship

not only compromises urban air quality but also

amplifies health risks, especially during extreme heat

events. A deeper understanding of this interplay is

essential for formulating integrated urban strategies

that address both heat mitigation and pollution control

in growing cities.

Human health, comfort, and quality of life

The health impacts of UHIs are significant and diverse,

affecting both physical and mental well-being (Singh et

al., 2023; Ebi et al., 2021). Heat exposure, in particular,

has been increasingly associated with higher rates of

anxiety, depression, and other mental health disorders,

as elevated temperatures tend to worsen stress and

exacerbate existing psychological conditions (Dai and

Liu, 2022; Hsu et al., 2021). In this context, Dai and Liu

(2022) conducted a comprehensive study in Tianjin

(2006–2020) to examine the health impacts of global

warming and UHIs and found that UHI-affected zones

expanded to 373 km², with growing impacts on

respiratory, cardiovascular, and mental health, particu-

larly in downtown areas and along traffic corridors in

Binhai New District. Highlighting the broader health

implications,, Tong et al. (2021) reported that the UHI

effect was responsible for more than 50% of total heat-

related mortality in certain regions during extreme heat-

waves. Extending this perspective, Bao et al. (2025) ana-

lysed data from 338,363 urban residents in the UK and

found that higher summer UHI intensity significantly

elevated the risk of mental health disorders, including

substance use (HR 1.12), depression (HR 1.08), and

anxiety (HR 1.06), particularly among women and indi-

viduals with hypertension or heart disease. UHI

exposure was also associated with worsened psychiatric

symptoms and alterations in brain white matter. Collec-

tively, these findings underscore UHI as a serious

environmental health stressor and highlight the need

for climate-adaptive urban planning to enhance public

health resilience and reduce mental health burdens.

Water quality deterioration

Streams UHIs often have higher baseflow temperatures

than rural and forested streams due to elevated urban

air and ground temperatures, extensive paved surfaces,

and reduced riparian canopies. Urban infrastructure,

including impervious surfaces and storm drains, chan-

nels runoff over these heated areas, causing rapid and

significant temperature increases (Somers et al., 2013;

Nelson and Palmer, 2007). Increased stream tempera-

tures reduce dissolved oxygen by boosting microbial

activity, oxygen demand, and lowering diffusion and

solubility. Warmer water impacts the growth, meta-

bolism, and reproduction of aquatic life, and can be

lethal if temperatures exceed their thermal limits

(Vannote and Sweeney, 1980; Imberger et al., 2008;

Hester and Doyle, 2011). Higher baseflow temperatu-

res are often negatively correlated with species richness,

mainly due to the loss of temperature-sensitive taxa

(Beitinger et al., 2000; Sponseller et al., 2001; Wang and

Kanehl, 2003; Jones et al., 2006; Nelson and Palmer,

2007).

Modifications in rainfall patterns induced by UHI

effects

The UHI effect influences local precipitation patterns

by altering atmospheric conditions (Figure 3). Studies

by (Wan et al., 2013; Zhong et al., 2017; Argüeso et al.,

2016; Liu and Niyogi, 2019)) demonstrated that UHI

alters circulation patterns, potentially increasing

precipitation. High urban temperatures create unstable

air masses, causing warm air to rise, cool, and condense

into rain-producing clouds. As this warm air mixes with

cooler layers, precipitation increases downwind of cities

(Lin et al., 2011; Mishra and Kannan, 2023). In addition

to thermal effects, urban areas also emit aerosols that

act as cloud condensation nuclei, enhancing cloud

microphysical processes and improving precipitation

efficiency (Lalonde et al., 2023). Lin et al. (2011)

employed the WRF model coupled with the Noah land

surface and urban canopy models to study the UHI

effect on precipitation in northern Taiwan’s complex

terrain. Under dominant southerly winds and elevated

temperatures, urban areas acted as warm, dry zones
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that initially restricted moisture transport and delayed

thunderstorm formation. However, intensified surface

heating eventually increased atmospheric instability and

enhanced rainfall, particularly downwind, with preci-

pitation increasing by up to 28%. Similarly, Zhong et al.

(2015) used the WRF-Chem model to investigate the

combined effects of UHI and elevated anthropogenic

aerosols on a heavy rainfall event in the Greater Beijing

Metropolitan Area (GBMA). Their simulations showed

that while UHI increased rainfall in the upstream

(northwest) region and decreased it downstream

(southeast), aerosols had the opposite effect suppres-

sing rainfall upstream and enhancing it downstream.

Indirect aerosol effects dominated, with smaller cloud

droplets promoting evaporative cooling and weakening

early convection upstream, while latent heat release

from droplet freezing later intensified convection and

rainfall downstream. Steensen et al. (2022) conducted a

20-year regional simulation for Paris and Shanghai to

assess how the UHI effect on precipitation might chan-

ge under future warming. Their results indicated a pro-

jectted decline in UHI-induced enhancement of both

mean and extreme precipitation. In Paris, UHI curren-

tly contributes to a modest increase in mean precipita-

tion (~2.2%), which slightly diminishes in future scena-

rios. Shanghai shows minimal UHI influence, both cur-

rently and under future warming, with the reduction

primarily attributed to decreased summer rainfall. Inter-

annual variability in UHI-induced precipitation was

more pronounced in Shanghai than in Paris. Contrary

to the conventional understanding, Ding et al. (2025)

examined over 1.3 million trans-urban wind paths

globally and found that stronger UHI intensities are

actually linked to weaker downwind precipitation

enhancement. Instead, they identified background wind

speed as the dominant factor influencing rainfall.

Strong winds promote convergence due to surface

roughness contrasts between urban and rural areas,

thus enhancing downwind precipitation. The study

concludes that dynamic factors like wind speed out-

weigh thermodynamic factors such as UHI intensity in

determining rainfall patterns, particularly in mid-to

high-latitude regions, with important implications for

urban planning and flood risk mitigation.

Climate change: fuelling the urban Heat Island

effect

Climate change significantly fuelling heat stress risks in

cities (Corburn, 2009; Oleson et al., 2015; Argüeso et al.,

2015), particularly in Asia, at warming levels of 1.5 °C
and 2 °C. As global temperatures rise, the UHI effect

worsens, increasing heatwave risks for nearly half of

the urban population while deteriorating health and

economic productivity (IPCC, 2021)

Figure 3: Mechanisms of urban Heat Island influence on precipitation
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Sachindra et al. (2016) investigated the impact of

climate change on UHI intensity in Melbourne’s central

business district (CBD), using Laverton, a less urbani-

zed location, as a rural reference. Their analysis of

temperature records from 1952 to 2010 showed a

significant upward trend in nocturnal UHI intensity,

whereas diurnal UHI remained relatively unchanged.

Using gene expression programming (GEP) to down-

scale outputs from GCMs (HadCM3, GFDL2.0, and

ECHAM5) under the A2 emission scenario, they

projected a gradual rise in minimum temperatures from

2000 to 2099 and a strengthening of UHI effects across

all seasons. Similarly, Keppas et al. (2021) assessed

future UHI behavior in the Mediterranean cities of

Rome and Thessaloniki using the WRF-ARW model

under the RCP 8.5 scenario. Through three 5-year

time-slice simulations (2006–2010, 2046–2050, and

2096–2100) at a 2 km resolution, they found that urban

areas consistently recorded higher nighttime and early

morning minimum temperatures (Tmin) than rural

surroundings, with a UHI intensity of +1.5 to +3 °C.

Although the UHI magnitude remained relatively stable

(~±0.2 °C) under future warming scenarios, the fre-

quency of nights with Tmin ≥ 20 °C is projected to

rise, particularly in coastal urban areas, along with a

significant increase in thermal discomfort in low-lying

zones. Additionally, rising global temperatures drive

greater cooling energy demands and amplify

anthropogenic heat emissions, further intensifying the

UHI effect (Oleson, 2012). Urbanization and land use

changes exacerbate this through a reinforcing feedback

loop, where increased emissions accelerate urban

warming (Hayes et al., 2022; Wang et al., 2022).

Urban Heat Island detection: a methodological

overview

Several approaches are employed to assess and retrieve

UHI, each offering distinct advantages and applications

depending on the study's objectives and context. The

following table 1 summarizes various methods.

Solutions to combat urban Heat Island formation:

paths to gooler cities

To effectively mitigate the UHI effect, a range of

strategies can be employed, particularly through

Nature-based solutions improve building materials,

and optimize urban planning (Figure 4). Following

are some actionable solutions for addressing UHI

effect.

Sustainable nature-based solutions

A. Green roofs and vertical gardens. Green roofs are

Methods of quantifying 

UHIs effect
Overview

In-Situ Measurement

It involves taking direct readings of temperature, humidity, and other meteorological

parameters within an urban area using technologies such as fixed stations (Sun et al., 2019; Siu

and Hart, 2013), mobile transects (Bottyán et al., 2005; Sun et al., 2019; Rodríguez et al., 2020)

with sensor-equipped vehicles, and portable handheld sensors. Although these methods

provide precise localized data, they are labour-intensive and have limited spatial coverage

(Rodríguez et al., 2020).

Remote sensing 

Remote sensing provides high-resolution data for monitoring UHI, with key methods such as

LST measurement, which quantifies temperature variations between urban and rural areas

(Majumder et al., 2021; Moazzam et al., 2022; Kimothi et al., 2023; Gadekar et al., 2023), and

biophysical indices such as NDVI (Normalized Difference Vegetation Index), NDBI

(Normalized Difference Built-up Index), and NDBaI (Normalized Difference Bareness Index)

are used to evaluate how green cover, urban density, and surface bareness affect heat

responsiveness (Jain et al., 2020; Pathak et al., 2021; Halder et al., 2021). These tools help

reveal the link between vegetation loss and rising urban temperatures.

Modeling approach

(Bahi et al., 2020) summarized key meteorological models for identifying UHIs, including the

CSU MM (Colorado State University Mesoscale Model), Model URBAN3, SHIM (Surface

Heat Island Model), the TEB model (Town Energy Balance), a statistical mapping approach

(Gousseff et al., 2024), the ENVI-met model (Cortes et al., 2022; Faragallah and Ragheb,

2022), and CFD (Computational Fluid Dynamics) (Mosca et al., 2024). The PLUS (Patch-

generating Land Use Simulation)) and Markov models are widely used for simulating future

urban scenarios and have proven highly effective in modeling land use changes (Zhao et al.,

2025).

Table 1. Overview of methods for assessing urban Heat Island effects
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plant-covered surfaces, typically consisting of

vegetation grown on a specialized substrate material

placed on building rooftops (Jamei et al., 2021). They

cool the surrounding environment through shading,

which blocks direct sunlight, and evapotranspiration,

where plants absorb water and release it as vapor,

thereby cooling the air (Lee et al., 2024; Jamei et al.,

2023; Cascone, 2022). Greening roofs creates a local

cooling effect ranging from 0.8°C to 1.5°C and

promotes energy savings (Qin et al.,2023). Jahangir et al.

(2024) found that adding vegetation to building roofs

can lower UHI by an average of 0.68°C. Lee et al.

(2024) emphasize that green roofs can reduce building

temperatures by 4.3°C to 5.0°C during peak months,

effectively mitigating the UHI effect. Furthermore,

green roofs can reduce cooling loads by up to 70%,

lower indoor temperatures by as much as 15°C, and

enhance thermal comfort, while also decreasing

pollutants and sequestering carbon (Mihalakakou et al.,

2023). Vertical gardens can mitigate UHIs by

converting unused vertical surfaces into green spaces,

enhancing biodiversity, energy conservation, thermal

insulation, and environmental quality, ultimately leading

to cooler urban environ-ments (Zaťovičová and

Majorošová, 2023; Lombardo et al., 2022).

B. Urban greening strategies: traditional vegeta-
tion and Miyawaki Forests. Trees significantly

reduce local air temperatures, offering cooling effects

2–3 times more effective than other urban green

spaces, making them a key solution for combating

UHIs (Kim et al., 2024). Guo et al. (2023) observed that

increasing tree cover significantly reduces UHI effects,

with tree-covered areas exhibiting LST approximately

2.23°C lower than surrounding built-up areas during

summer. Pace et al. (2023) found that a 10% increase in

tree cover can reduce maximum hourly air temperature

by 0.2°C, highlighting a direct relationship between tree

cover and UHI mitigation. Adams and Smith (2014)

noted that a 14% increase in tree cover could

completely counteract the heat generated by urban

materials. Utilizing native, drought-tolerant plants in

roadside planters and vacant lots can help alleviate heat

by integrating small green spaces into urban areas

(Irfeey et al., 2023). Barradas et al. (2022) studied fifteen

urban tree species in Mexico, finding that Liquidambar

styraciflua L. had a high midday transpiration rate of

0.0357 g m² s⁻¹, indicating strong cooling potential and

effectiveness in reducing urban heat. These results can

assist urban planners in redesigning urban parks to mi-

tigate heat while increasing tree diversity. The Miyawaki

Forest method, developed by Japanese botanist Dr.

Akira Miyawaki (Miyawaki and Golley, 1993), offers a

promising and relatively rapid solution for urban

greening. This technique has been successfully imple-

mented in Japan and has shown encouraging results in

other Asian countries, including Thailand, Malaysia,

and India (Singh and Saini, 2019). By planting dense,

multilayered native forests using a mix of species,

Miyawaki micro-forests establish self-sustaining ecosy-

stems that attract diverse wildlife such as birds, butter-

flies, and insects. Beyond biodiversity enhancement,

these urban forests play a vital role in mitigating

pollution, lowering ambient temperatures, and provi-

ding crucial ecological and social benefits, including

disaster risk reduction.

C. Blue infrastructure. Urban water bodies reduce

the UHI effect and enhance thermal comfort, influen-

ced by proximity to residences, vegetation, and urban

design (Xie et al., 2023; Wu and Zhang, 2019). Wang et

al. (2023) reported that large urban water bodies, such

as Meijiang Lake, can reduce the UHI effect by up to

14.44% within a 130-meter radius, providing significant

cooling to nearby residential areas. Zeeshan and Ali

(2023) found that water bodies reduce the UHI effect

by lowering air temperature by 0.9°C and surface

temperature by 3.5°C. Rahul and Mukherjee (2023)

found that water bodies, such as Sukhna Lake in

Chandigarh, significantly reduce UHII during summer,

with cooling effects reaching up to 3.52 °C in areas

with dense trees. Supporting this, Lin et al. (2020)

found that a 10% increase in water body coverage in

the Pearl River Delta led to an 11.33% reduction in

SUHI intensity, with cooling effects extending up to

100 meters beyond their edges. While water features

are often efficient at reducing the UHI effect during

the day, they can also add to the UHI effect at night.

Studies show that surrounding temperatures can rise

significantly at night, sometimes matching those in

residential areas (Yao et al., 2023), due to the thermal

inertia of water bodies, which retain heat (Xie et al.,

2023).

C. Cool roofs and cool pavements. Cool roofs and

cool pavements reduce cooling energy use in air-

conditioned buildings, improve thermal comfort, and

mitigate the UHI effect (Akbari and Matthews, 2012)

by reflecting more sunlight than conventional roofs

and pavements, thereby reducing the amount of solar

energy absorbed. Lee et al. (2023) observed significant

surface temperature reductions after installing these so-
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lutions, with slab and panel roofs reducing tempe-

ratures by 15.5°C and 11.6°C, respectively, while cool

pavements lowered temperatures by at least 4°C.

Furthermore, Kolokotsa et al. (2018) demonstrated that

the application of cool roofs and pavements resulted in

a 17% reduction in energy use and a 10K reduction in

surface temperature. In a related study, Akpınar and

Sevin (2018) found that reflective concrete pavements

coated with high-reflectance paint exhibited albedo

values that were 60% higher, with surface temperatures

and heat gradients 40% and 38% lower, respectively,

compared to uncoated surfaces. Building upon this,

Stache et al. (2022) quantified the surface energy

balance of urban materials and vegetation types,

highlighting vegetation’s role in UHI mitigation. Moss

emerged as the most effective, converting 50% of

absorbed energy into latent heat, while sedum was least

efficient, directing 73% into convectional heat. Albedo

differences also influenced cooling potential, with ivy

showing the highest (0.10) and moss the lowest (0.07).

Complementing these nature-based strategies, material

innovations offer promising UHI solutions. Wanni-

arachchi et al. (2025) developed a resin-based compo-

site paving material with high porosity (27.14%) and

increased albedo (over 100%) when coated with alu-

minum powder. Similarly, Chen et al. (2025) introduced

a heat-reflective pavement coating using bismuth

vanadate and iron oxide yellow, reducing surface

temperatures by 15.2°C while ensuring durability and

low glare. Together, these studies underscore the

potential of both vegetation selection and reflective

urban materials in enhancing urban thermal comfort

and resilience.

Other solutions 

Optimizing urban layout through lower building

coverage, adjusted floor area ratios, and wind corridors

improves ventilation and helps reduce UHI intensity.

(Hsieh et al., 2023; Makvandi et al., 2023). (slands (2014)

emphasized that community awareness can be enhan-

ced through educational campaigns, while policies like

tree planting and reflective surfaces are essential for

effective UHI mitigation. Moreover, Kolbe (2019)

highlighted that transitioning from conventional vehi-

cles to electric or hydrogen-powered options can signi-

ficantly reduce UHI intensity and CO₂ emissions, espe-

cially when powered by renewable energy. Furthermo-

re, improving public transport, particularly metro sy-

stems, offers notable benefits for reducing urban heat

and emissions, emphasizing the role of sustainable mo-

bility in UHI mitigation(Maruthu and Shanmugavel,

2023; Luthra, 2023). Promoting employment opportu-

nities in rural areas offers a promising approach to

mitigating UHIs. Creating jobs outside urban centres

can reduce migration-driven population density, which

eases pressure on urban infrastructure and lowers heat

generation. The green surroundings in rural areas aid in

naturally cooling the environment, while lower energy

demands and reduced commuting further limit emis-

sions and heat production. Initiatives such as remote

work, rural entrepreneurship, and government incenti-

ves support sustainable development and enhance

quality of life in these regions. Collectively, these ef-

forts present a balanced and comprehensive strategy

for addressing UHI challenges.

Dual perspectives: the contribution of solar panels

to urban Heat Island alleviation and potential

intensification

The installation of solar panels, particularly

photovoltaic (PV) systems, can both mitigate and

intensify the UHI effect, with their impact on urban

temperatures depending on factors such as placement

and urban design. Solar panels have emerged as a

promising solution to mitigate the UHI effect,

providing both cooling benefits and renewable energy

generation. Masson et al. (2014) demonstrated that solar

panels reduce air conditioning energy consumption by

12% and lower the UHI effect by 0.2 K during the day

and 0.3 K at night, highlighting their global benefits in

renewable energy generation and climate warming

mitigation, as well as local advantages in reducing

health risks associated with UHI, especially in summer.

Ma et al., (2017) studied the impact of rooftop solar PV

systems in cities, showing that in Sydney, Australia,

they can reduce summer maximum temperatures by up

to 1°C by generating local energy and lessening the

need for imported energy. However, studies have

shown that PV installations can worsen the UHI effect

(Elhabodi et al., 2023; He et al., 2024) in densely popu-

lated areas while cooling sparsely vegetated regions,

highlighting a complex interaction with urban heat

dynamics (Mandavgane et al.). Khan and Santamouris

(2023) reported that deploying photovoltaic solar

panels can increase ambient temperatures by up to 1.4

°C and surface temperatures by 2.3 °C in urban

environments. While essential for sustainable energy,

the deployment of solar panels in urban areas requires

careful management to prevent worsening the UHI

effect, emphasizing the need for strategic urban

planning.
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Figure 4. Urban cooling techniques: addressing the urban heat island effect

Reimagining urban Heat Island studies: future

insights

Future insights into the UHI effect emphasize the

complex interplay between urbanization, climate

change, and land use dynamics. With continued urban

expansion, the UHI effect is projected to intensify,

posing significant challenges to urban sustainability and

public health. Effective UHI management should

prioritize customized urban planning strategies that

address the diverse impacts of urban morphology

across different functional zones. Further research is

necessary to explore the broader implications of the

UHI effect on urban climate and precipitation patterns.

Additionally, future studies should consider socio-

economic factors and climate change scenarios to more

accurately predict UHI patterns and associated risks.

Conclusion

The investigation into Urban Heat Island (UHI)

dynamics reveals it as a pressing challenge to urban su-

stainnability, stemming from multiple interlinked fac-

tors such as loss of vegetation, use of heat-absorbing

construction materials, compact urban forms, and

human-induced heat emissions. Intensified by climate

change, UHI contributes to rising energy demands,

deteriorating air quality, and heightened health vulnera-

.

bilities. While both technological and nature-based in-

terventions are vital, green infrastructure including ur-

ban forestry, green roofs, and blue spaces-stands out

for its multifunctional benefits. Additionally, the com-

plex role of solar panels necessitates careful urban inte-

gration to prevent localized heating. Implications of

this review suggest a pressing need for interdisciplinary

urban planning that aligns climate resilience with equity

and sustainability goals. Policymakers should prioritize

investment in green infrastructure and adaptive urban

design, while researchers must explore context-specific

models that incorporate both climatic and social di-

mensions. By bridging science, policy, and community

action, cities can transition toward cooler, healthier,

and more inclusive urban environments.
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