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Abstract 
 

Clay content is the most important textural fraction because affects soil fertility and 

productivity. Reflectance spectroscopy in the visible and near infrared (Vis-NIR, 

350-2500 nm) spectral region could be an alternative to laboratory standard 

methods. This paper was aimed to develop a calibration model with laboratory-

based soil Vis-NIR spectra for clay content determination and mapping clay 

content using a geostatistical approach. Soil samples were collected at 235 

locations in a forest area of southern Italy and analyzed in laboratory for clay 

content and Vis-NIR spectroscopic measurements. Partial least squared regression 

(PLSR) was applied to establish a relationships between reflectance and clay 

content. Calibration model was developed using only 175 samples, while the 

remaining 60 samples were used for testing the model. The results of PLSR were 

satisfactory and ordinary kriging was used for spatial interpolation of clay content 

determined both using conventional method and the PLSR model. 

Key words: Soil clay content, Vis-NIR spectroscopy, PLSR, Ordinary kriging, 

Southern Italy.  

 

Résumé 
 

La teneur en argile est la partie la plus importante de la texture parce qu’elle 

influence la fertilité et la productivité du sol. La spectroscopie visible et proche 

infrarouge (350-2500 nm, Vis- NIR) pourrait être une alternative aux méthodes 

traditionnelles de laboratoire. L'objectif de l'étude a été le développement d'un 

modèle prédictif de la teneur en argile dans le laboratoire en utilisant la 
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spectroscopie Vis- NIR et la cartographie avec une approche géostatistique. Dans 

une zone de forêt (sud de l'Italie) 235 échantillons de sol ont été collectés et 

analysé en laboratoire pour la détermination de la teneur en argile et l'acquisition 

des spectres de réflectance. Les spectres, divisé en un ensemble de calibrage (175) 

et à une validation (60), ont été analysées par la régression des moindres carrés 

partiels (PLSR). Les résultats ont été satisfaisants et les données d’argile avec les 

deux méthodologies ont été interpolées par krigeage ordinaire. 

Mot-clés: Teneur de l’argile, spectroscopie Vis-NIR, PLSR, krigeage ordinaire, 

Sud de l’Italie. 

 

Riassunto 
 

Il contenuto in argilla è la più importante frazione tessiturale perché influenza la 

fertilità e la produttività del suolo. La spettroscopia nell’intervallo compreso tra il 

visibile e l’infrarosso vicino (350-2500 nm, Vis-NIR) potrebbe essere una 

alternativa ai metodi di laboratorio tradizionali. 

L’obiettivo dello studio è stato lo sviluppo di un modello predittivo del contenuto 

di argilla mediante l’utilizzo in laboratorio della spettroscopia Vis-NIR e la 

successiva mappatura con un approccio geostatistico. 

All’interno di un’area forestale (sud Italia) sono stati prelevati 235 campioni di 

suolo e analizzati in laboratorio per la determinazione del contenuto in argilla e 

l’acquisizione degli spettri di riflettanza. 

Gli spettri, suddivisi in un set di calibrazione (175) ed in uno di validazione (60), 

sono stati analizzati attraverso la regressione parziale ai minimi quadrati (PLSR). I 

risultati sono stati soddisfacenti e i dati di argilla determinati con entrambe le 

metodologie sono stati interpolati mediante il kriging ordinario. 

Parole chiave: Contenuto in argilla, spettroscopia Vis-NIR, PLSR, kriging 

ordinario, Sud Italia.  

 

Introduction 
 

Soil mineral particles are classified according to their size into sand, silt, and clay 

(Osman, 2013). Since soil particles vary widely in their shapes, they are classified 

on their effective diameter: the diameter of a sphere that has a velocity of fall in a 

liquid medium equal to the particle in question. Sand and silt particles consist of 

primary minerals such as quartz, feldspars, and mica, while clay particles are 

mainly secondary minerals such as kaolinite, smectite, vermiculite, illite, chlorite, 

and hydrated oxides of iron and aluminium (Osman, 2013). Clay particles have 

large surface area and electrical charges, both negative and positive, on their 

surfaces. Because of these properties, clays they have high water- and nutrient-

holding capacity and they participate in chemical reactions in the soil. Therefore, to 

determine soil clay content and to capture its variability is essential for utilizing 

and managing forest soils, particularly, when a large number of samples have to be 

analysed. 
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In the last two decade laboratory visible, near infrared (Vis-NIR, 350 - 2500 nm) 

spectroscopy has been widely used and accepted as alternative to traditional 

laboratory methods because Vis-NIR spectroscopy is rapid, relatively inexpensive, 

require minimal sample preparation and no hazardous chemicals, is non-destructive 

and several soil properties can be measured from a single scan (e.g. Reeves et al., 

2001, 2002; Shepherd & Walsh, 2002; Demattê et al., 2006; McBratney et al., 

2006; Viscarra Rossel et al., 2006; Stenberg et al., 2010; Conforti et al., 2012). 

The determination of clay content by Vis-NIR measurements depend on the 

distinctive spectral signatures of common clay minerals (Waiser et al., 2007). The 

spectral signatures include overtones and combination of bands due to chemical 

bonds within soil minerals (Clark, 1999; Stenberg et al., 2010). 

Vis-NIR reflectance spectroscopy requires only a few seconds to analyze a soil 

sample, but the relevant information needs to be mathematically extracted from the 

spectra so that it can be correlated with soil clay content. Therefore, the successful 

application of Vis-NIR spectroscopy to quantification and evaluate the 

relationships between soil reflectance and soil clay content depends largely on the 

development of accurate and robust calibration models. To investigate the 

relationships between reflectance spectra and soil clay content, chemometrics 

techniques and multivariate statistical methods (Martens and Næs, 1989; Viscarra 

Rossel and Behrens, 2010; Stenberg et al., 2010) have to be used. 

In addition, clay content predictions are made only at the sampled locations, so for 

producing accurate continuous maps, clay content needs to be estimated spatially. 

Geostatistical methods (Matheron, 1971) are commonly used to generate maps of 

soil properties and they provide a valuable tool to study the spatial pattern of soil 

properties, taking into account spatial autocorrelation of data to create 

mathematical models of spatial correlation structures, commonly expressed by 

semivariograms. The interpolation technique of the variable at unsampled 

locations, known as kriging, provides the ‘best’, unbiased, linear estimate of a 

regionalized variable in an unsampled location, where ‘best’ is defined in a least-

square sense (Chilès and Delfiner, 2012).  

The paper was aimed at: 1) developing a calibration model with laboratory-based 

soil Vis-NIR spectra for soil clay content determination; and 2) mapping soil clay 

content using a geostatistical approach. 

 

Material and methods  
 

Study area  

The study area was a high forest beech (Fagus sylvatica) located in the Serre 

Massif (Calabria, southern Italy) between 4,262,231N to 4,261,333N latitude and 

607,788E to 608,583E longitude (Figure 1). It covers an area of about 332,000 m2, 

with elevation ranging from 1,155 to 1,205 m above sea level. 

The climate is typical upland Mediterranean (Csb, sensu Koppen 1936) with a 

long-term (1928-2012) average annual precipitation equal to 1,810 mm distributed 

on 110 rainy days and an average mean annual temperature of 11.3 °C.  

 



M. Conforti et al. / EQA, 11 (2013) 49-64 

 52 

The precipitation pattern shows a rainy period from November to February in 

which occurs more than 60% of total annual precipitation.The pedoclimate shows a 

mesic soil temperature regime associated with a udic soil moisture regime 

(ARSSA, 2003).  

 

 
Figure 1 - Location of the study area and soil samples distribution in the soil texture 

classes. 

 
Geologically the study area is characterized by Palaeozoic granitoid rocks deeply 

fractured, weathered and frequently covered by a thick regolith and/or colluvial 

deposits (Borsi et al., 1976; Calcaterra et al., 1996). Morphology is dominated by a 

mountains landscape with deep, V-shaped valleys and summit Paleosurfaces that 

represent the remnants flat or gently-sloping highlands, often sharply separated by 

steep slopes (Sorriso-Valvo, 1993; Calcaterra and Parise, 2010). 

According to USDA (2010) soil classification, the most frequent soils are 

Inceptisols and Entisols (ARSSA, 2003). Generally, soil depth ranges from shallow 

to moderately deep (0.20 to 1m) and soil profiles have A-Bw-Cr and/or A-Cr 

horizons (ARSSA, 2003). The soils have acidic pH (3.7–5.8), are coarse-textured, 

because are mainly classified as sandy loam, loam and silt loam and the bulk 

density ranges from 0.5 to 1.6 g cm-3.  

Accumulation of organic matter in upper A horizons (umbric epipedon, USDA, 

2010) is among the dominant pedogenetic processes. 

 

Soil sampling and analysis 

Soil samples were collected at 235 locations within the study area (Figure 1). At 

each site, surface litter was removed and soil was sampled to a depth of 20 cm 
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using a metallic core cylinder having a diameter of 7.5 cm and a height of 20 cm 

(883.1 cm3). Soil sampling locations were georeferenced using a differential global 

positioning system (DGPS), with a precision of about 1m. 

The soil samples were brought to the laboratory, oven dried at 45°C for 48 hours, 

gently crushed in an agate mortar to break up larger aggregates and visible roots 

were removed; afterwards each sample was sieved at 2 mm, homogenized and 

quartered. Soil clay content was determined using the hydrometer method after a 

pre-treatment with sodium hexametaphosphate as a dispersing agent (Sequi and De 

Nobili, 2000). 

 

Spectral measurements 

Vis-NIR spectral measurements were acquired in the laboratory using an ASD 

FieldSpec IV 350–2500 nm spectroradiometer (Analytical Spectral Devices Inc., 

Boulder, Colorado, USA). Prior to the determination of the spectral data, soil 

samples, sieved at 2 mm, were placed in Petri dishes, 9.5 cm in diameter and 1.2 

cm in height, and levelled with the edge of a spatula to obtain a smooth surface. 

The spectral measurements were collected in a black room to better control 

irradiance conditions. The spectroradiometer combines three spectrometers to 

cover the solar reflected portion of the spectrum between 350 and 2500 nm, with a 

sampling interval of 1.4 nm for the 350-1000 nm region and 2 nm for the 1000-

2500 nm region. FieldSpec IV provided spectra collected with a sampling 

resolution of 1 nm, thus producing 2151 spectral bands. A 50-Watts halogen lamp 

with a zenith angle of 30°, located at a distance of approximately 25 cm from the 

soil sample was used as artificial illumination. The instrument was located in a 

nadir position with a distance of 10 cm from the sample, allowing the radiance 

measurements within a circular area of approximately 4.5-cm diameter to be done. 

The noise level in the spectral signal was reduced averaging 50 spectra for each 

soil sample. In addition, to eliminate any possible spectral anomalies due to 

geometry of measurement, four replicate scans were acquired for every soil sample 

by rotating the soil sample by 90° and were averaged in post-processing. A 

Spectralon panel (20 x 20 cm2, Labsphere Inc., North Sutton, USA) was used as 

white reference to compute reflectance values. A reference spectrum under the 

same conditions of measurement was acquired immediately before the first scan 

and after every set of five samples.  

The average reflectance curves were translated from binary to ASCII using 

ViewspecPro software (Analytical Spectral Devices, Inc., Boulder, CO, 80301) and 

re-sampled each 10 nm, reducing the number of wavelengths from 2151 to 216, 

which smooths the spectra and reduces the risk of over-fitting (Kemper and 

Sommer, 2002; Shepherd and Walsh, 2002). 

 

Prediction model 

In this study, as multivariate statistical procedure to develop a calibration model 

based on spectra and laboratory soil clay content data, partial least squares 

regression (PLSR) methodology (Geladi and Kowalski, 1986) was used. PLSR is a 
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technique widely used in chemometrics (e.g. Aïchi et al., 2009; Cozzolino and 

Moron 2003; Viscarra Rossel et al., 2006; Conforti et al., 2013) when there are 

many predictor variables, highly collinear. PLSR is based on latent variable 

decomposition of two sets of variables: the predictors X, which, in our case, are the 

spectral reflectance bands and the responses Y, that are the soil clay content data. 

PLSR selects orthogonal factors that maximize the covariance between the 

independent (X) and the dependent variables (Y), where the limited number of 

PLSR factors selected explains most of the variation in both predictors and 

responses. More details can find in Martens and Naes (1989) and Næs et al. (2004). 

PLSR analysis was carried out using the PArLeSvs3.1 software developed by 

Viscarra Rossel (2008). 

Before performing quantitative statistical analysis, to reduce noise and enhance the 

absorption frequencies, some spectral data pre-processing techniques were 

performed (Martens and Næs, 1989; Næs et al., 2004). The measured reflectance 

(R) spectra were transformed in absorbance through log(1/R) to reduce noise, 

offset effects, and to enhance the linearity between measured absorbance and soil 

clay content. The absorbance spectra were mean-centred to ensure that all results 

will be interpretable in terms of variation around the mean and then they were 

smoothed using a Savitzky–Golay filter algorithm with a first derivative to remove 

an additive baseline (Viscarra Rossel, 2008). 

To test the accuracy of the PLSR regression models the dataset were randomly split 

into two subset: a training set (175 samples = 75% of the total database) for 

developing the prediction model, and a validation set (60 samples = 25% of the 

total database) to test the accuracy of model. 

Leave-one-out cross-validation was performed (Efron and Tibshirani, 1993) to test 

the predictive significance of each PLSR component and to determine the number 

of factors (latent variables) to be retained in the calibration model. In the leave-

one-out cross-validation, one sample was left out of the global data set and the 

model was calculated on the remaining data points. Then the value of left-out 

sample was predicted and the prediction residual computed. The process was 

repeated with another sample of the data set, and so on, until every sample had 

been left out once. In this study, 20 bilinear factors were tested. To check the 

goodness of prediction of the leave-one-out cross-validation models were using the 

coefficient of determination (R2) and root mean square error (RMSE). 

The validation set was used to test the calibration model through the coefficient of 

determination of validation (R2
val) and root mean square error of validation 

(RMSEval). 

 

Geostatistical approach  

To produce accurate continuous maps, both measured and spectrally predicted 

values of soil clay content were modelled as an intrinsic stationary process using a 

geostatistical approach where each datum z(x ) (measured or spectrally predicted) 

at different location x  (x is the location coordinates vector and  the sampling 

points = 1, ..., N) is interpreted as a particular realization of a random variable 
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Z(x ). Interested readers are referred to Chilès and Delfiner (2012), Goovaerts 

(1997), Wackernagel (2003), Webster and Oliver (2007), among many others. 

The quantitative measure of spatial correlation of the regionalized variable z(x ) is 

the experimental variogram h) which is a function of the distance vector (h) of 

data pairs values )](),([ hxx  zz . A theoretical function, called variogram 

model, is fitted to the experimental variogram to allow one to estimate the 

variogram analytically for any distance h. Experimental variograms can be 

modelled using only functions that are conditionally negative definite, in order to 

ensure the non-negativity of the variances. The objective is to build a permissible 

model that captures the major spatial features of the attribute under study. The 

variogram model generally requires two parameters: range and sill. The range is 

the distance over which pairs of the three soil textural fractions are spatially 

correlated, while the sill is the variogram value corresponding to the range. The 

optimal fitting will be chosen on the basis of cross-validation, which checks the 

compatibility between the data and the structural model considering each data point 

in turn, removing it temporarily from the data set and using its neighbouring 

information to predict the value of the variable at its location. The estimate is 

compared with the measured value by calculating the experimental error, i.e. the 

difference between estimate and measurement, which can be standardized by 

estimating the standard deviation. The goodness of fit was evaluated by the mean 

error (ME) and the mean squared deviation ratio (MSDR). The mean error (ME) 

proves the unbiasedness of estimate if its value is close to 0. The mean squared 

deviation ratio (MSDR) is the ratio between the squared errors and the kriging 

variance (Webster and Oliver, 2007) and if the model for the variogram is accurate, 

the MSDR value should be 1. 

The fitted variograms for the measured and predicted data of the soil clay content 

data were used to estimate their values at unsampled locations using Ordinary 

kriging (Webster and Oliver, 2007). Finally, the values of soil clay content of 

laboratory measured data and predicted values from spectroscopic data were 

estimated at the nodes of a 1 m x 1 m interpolation grid. 

All statistical and geostatistical analyses were performed using the software 

Isatis®, release 2013.3 (http://www.geovariances.com). 

 

Results and Discussion  
 

The basic statistics for exhaustive data set, training and validation sets of soil clay 

content are reported in Table 1. The percentage of clay content in the samples of 

the exhaustive data set ranges from 2.8% to 23% with a mean value of 11.5% 

(Table 1), indicating that most samples have overall low clay content. The data 

distribution appear almost normal (Figure 2) and is characterized by a positive 

value skewness (0.23). Descriptive statistics of clay content for training set and 

validation set are quite similar to those of the exhaustive data set (Table 1, Figure 

2). 

 

http://www.geovariances.com/
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Exhaustive 

set 

Training 

set 

Validation 

set 
Table 1  
 

Descriptive statistics 

of the exhaustive, 

training and 

validation data sets  

of clay content 

Count (-) 235 175 60 

Minimun (%) 2.80 2.80 3.70 

Maximum (%) 23.00 23.0 20.20 

Mean (%) 11.50 11.50 11.70 

Stand. dev. (%) 3.60 3.60 3.50 

Skewness (-) 0.23 0.20 0.32 

Kurtosis (-) 0.11 0.17 -0.24 

. 

 

 

Figure 2 

 

Distribution of clay 

content for exhaustive, 

training and validation 

data sets.  

Bars = histogram,  

Line = normal fit. 

 

The raw spectra of all soil samples analyzed in laboratory are plotted in Figure 3a. 

The soil spectra showed the typical pattern in each region of wavelength domain, in 
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particular, reflectance is generally lower in the visible range (350-700 nm) and 

higher in the near infrared (700-2500 nm). In accord with Demattè et el., (2014), on 

the spectral curves can be observed three main features: variation of the overall 

reflectance intensity (albedo), absorption bands (depth and amplitude), around 

1400, 1900 and 2200 nm, and changes in the spectral shape (Figure 3a). The soil 

reflectance spectral characteristics are closely related to the physical, chemical and 

mineralogical properties of soil. Variations in reflectance intensity and shape of the 

spectral curves were mainly due to differences in soil clay content. Soil reflectance 

was relatively higher for low content of clay content, throughout the 350 nm to 

2500 nm wavelength range (Figure 3b). 

 

 

 

Figure 3  
 

a) Reflectance curves for 

each soil sample scanned.  

 

b) Reflectance curves of 

soils with different clay 

content.  

 

Note the differences in 

shapes of spectral curves; 

slopes; overall reflectance 

intensity; position of 

absorption bands, 

diagnostic of the clay 

minerals. 

 

 
Relationship between the spectral reflectance of each soil and the soil texture 

classes (Figure 1) showed that soils with higher clay content, which fall in the loam 

and silt loam textural classes showed low values of albedo (Figure 4). On the 

contrary, high values of albedo occurred in the soil samples with loamy sand 
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texture (Figure 4), which have a content of sand more than 70% and a clay content 

very low (< 6%). In addition, the reflectance curve of soils with low clay content 

had a convex shape indicated by a steep reflectance rise between 500 nm and 800 

nm of wavelength (Figure 3a). 

 

 

Figure 4                     
Box-plots of clay 

content for the different 

soil textural classes. 

The lower and upper 

limits of each box are 

the 25th and 75th 

percentiles, the 

whiskers show the data 

range and the 

horizontal line in each 

box represents the 

median. 

Absorption bands at 1400, 1900 and 2200 nm may be associated with clay minerals 

(Demattê et el., 2004; Sørensen and Dalsgaard, 2005; Demattê et el., 2014); in 

particular, 2:1 (smectite, vermiculite, illite/mica) and 1:1 (kaolinite) clay minerals 

occurring in the soils could be identified at approximately 1400 and 1900 nm 

(Figure 3b) due to vibrations caused by the interaction of energy in the OH− and 

H2O ([H\O\H] +[O\H]) molecules found between unit layers of mineral structures 

(Ben-Dor et al., 2008). The absorption band at 2200, due to interactions with the 

aluminol group (Al–OH) of clay minerals, e.g. kaolinite and montmorillonite 

(Clark et al., 1990). (Figure 3b). The results of the PLSR are reported in Figure 5, 

the best cross-validation model was obtained using 9 factors with a RMSE of about 

1.6% and a R2 of 0.82. 

 

 
Figure 5 - Scatter-plots of predicted versus measured clay content for training and 

validation sets. R2: coefficient of determination; RMSE: root mean square error. 
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Also for the validation set, satisfactory results were obtained with the RMSE equal 

to 1.7% and the coefficient of determination R2 equal to 0.80. 

No anisotropy was evident in the maps of the 2-D variograms (not shown) to a 

maximum lag distance of 450 m for both measured and spectrally predicted clay 

contents. 

A bounded isotropic nested variogram model was fitted for each experimental 

variogram including three basic structures (Table 2): a nugget effect, a spherical 

model (Webster & Oliver 2007) at short range and a spherical model at longer 

range. The nugget effect implies a discontinuity in )(xZ  and is a positive intercept 

of the variogram. It arises from errors of  measurement and spatial variation within 

the shortest sampling interval (Webster and Oliver 2007). The spherical model 

(Webster and Oliver 2007) is given by: 

 

 


































ahifc

ahif
a

h

a

h
c

h

                                           

                   
2

1

2

3
3

     [1] 

where c is the sill and a the range. The presence of two ranges (short and long) in 

the nested model of variogram means that the physical processes responsible for 

the variation of soil texture operate and interact at two spatial scales: the short 

range at about 40-48 m and the longer range at 136-244 m. 

 

 

Variable Model Range (m) Sill (%2)  Table 2  

 

Variogram model 

parameters for the 

values of measured 

(meas) and 

spectrally predicted 

(pred) clay content. 

Claymeas 

Nugget - 5.4788  
Spherical 47.89 4.1439  
Spherical 135.54 2.7184  

Claypred 

Nugget - 6.0568  
Spherical 38.78 2.3472  
Spherical 243.76 3.2977  

 
The goodness of fitting for the variogram models was verified by cross-validation 

and the statistics used, i.e. the mean of the estimation error and variance of the 

mean squared deviation ratio, showed satisfactory results (quite close to 0 and 1, 

respectively). 

The fitted variogram models were used with ordinary kriging to produce the maps 

of clay contents for measured and spectrally predicted data (Fig. 6a,b). In addition, 

comparison of the two maps has revealed that the spectrally predicted data allowed 

a good reproduction of the spatial pattern of the clay content, as show the map of 

differences between the measured and predicted interpolated maps (Figure 6c). 

Therefore, even though 71.8% of the pixels were overestimated and about 28.2% 
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were underestimated, the mean difference between observed and estimated values 

is -0.3%, whereas the minimum value is -2.4% and the maximum is 2.6%. 

 

  
 

 

  

Figure 6  

Maps of measured  

(a) and spectrally predicted  

(b) values of clay content;  

(c) map of differences  

between measured and  

spectrally predicted values  

of clay.  

 

 
Conclusions  

 

Several studies have emphasized the ability of Vis-NIR (350-2500 nm) 

spectroscopy for predicting soil physical, chemical and biological properties. In 

this study, the potentiality of laboratory reflectance spectroscopy in the Vis-NIR 

domain for determining soil clay content in forest soils was tested. Reflectance 

spectroscopy allows detecting soil changes through variations in reflectance 
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intensity, absorption features and spectral shape. The results showed that soil clay 

content has an important influence on spectral reflectance in the Vis-NIR range. 

Therefore, interpretation of spectral curves showed that soil samples could be 

spectrally separable on the basis of soil textural classes; in particular, it was 

observed that the reflectance intensity (albedo) was relatively higher, for soils with 

loamy-sand texture and, relatively, low for silt loam soils, which have an high clay 

content. 

PLSR model allowed an accurate prediction of soil clay content and the same 

occurred for the validation set. 

Accurate continuous maps of soil clay content can be obtained coupling the 

multivariate calibrations approach with a geostatistical approach. Mapping spatial 

distribution of soil clay content is critical for understanding and managing forest 

soils. 
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