RESPONSE OF TOMATO PLANTS EXPOSED TO TREATMENT WITH NANOPARTICLES

Authors

  • Tommaso Giordani Dipartimento di Biologia delle Piante Agrarie, University of Pisa, Pisa
  • Alberto Fabrizi Dipartimento Tecnica e Gestione dei Sistemi Industriali, University of Padova, Padova
  • Lucia Guidi Dipartimento di Biologia delle Piante Agrarie, University of Pisa, Pisa
  • Lucia Natali Dipartimento di Biologia delle Piante Agrarie, University of Pisa, Pisa
  • Giulia Giunti Dipartimento di Biologia delle Piante Agrarie, University of Pisa, Pisa
  • Fausto Ravasi Dipartimento di Biologia delle Piante Agrarie, University of Pisa, Pisa
  • Andrea Cavallini Dipartimento di Biologia delle Piante Agrarie, University of Pisa, Pisa
  • Alberto Pardossi Dipartimento di Biologia delle Piante Agrarie, University of Pisa, Pisa

DOI:

https://doi.org/10.6092/issn.2281-4485/3748

Keywords:

nanoparticles, tomato, hydroponic, root uptake

Abstract

In this work the response of Tomato plants cv. Micro-Tom to nanoparticles (NPs) treatment was investigated. Tomato seedlings were grown in hydroponic condition and NPs treatments were carried out by adding Fe3O4 or TiO2 NPs to nutrient solution. At the end of treatments, NPs root uptake and tissue deposition were investigated using Environmental Scanning Electron Microscope, equipped with energy dispersive spectroscopy for chemical identification. At morphological level, one week after the beginning of NP treatment, seedlings grown with high concentration of TiO2 NPs showed an abnormal proliferation of root hairs, as compared to the control seedlings and to the seedlings exposed to Fe3O4 NPs, Shoot morphology did not differ in tomato seedlings grown under different conditions and no symptoms of toxicity were observed in NP-treated plants. In order to analyse genetic effects of NPs treatments, RNA transcription was studied in roots of NP-exposed and control plants by Illumina RNA sequencing, evidencing the induction of transposable elements.

References

BAGGERLY K.A., DENG L., MORRIS J.S., ALDAZ C.M. (2003) Differential expression in SAGE: Accounting for normal between-library variation. Bioinformatics 19: 1477-1483

CORREDOR E., RISUEÑO M.C., TESTILLANO P.S. (2010) Carbon-iron magnetic nanoparticles for agronomic use in plants Promising but still a long way to go. Plant Signaling & Behavior 5: 1295-1297

FEIZI H., REZVANI MOGHADDAM P., SHAHTAHMASSEBI N., FOTOVAT A. (2012) Impact of Bulk and Nanosized Titanium Dioxide (TiO2) on Wheat Seed Germination and Seedling Growth. Biol Trace Elem Res 146: 101–106

GOTTSCHALK F., SONDERER T., SCHOLZ R.W., NOWACK B. (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environmental Science & Technology 43: 9216–9222

GRANDBASTIEN M.A. (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Science 3: 181-189

HANDY R. D., OWEN R., VALSAMI-JONES E. (2008a) The ecotoxicology of nanoparticles and nanoma¬terials: current status, knowledge gaps, challenges and future needs. Ecotoxicology 17: 315-325

HANDY R. D., VON DER KAMMER F., LEAD J. R., HASSELLOV M., OWEN R., CRANE M. (2008b) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17: 287-314

HIROCHIKA H. (1993) Activation of tobacco retrotransposons during tissue culture. Embo J. 12: 2521-2528

HIROCHIKA H., SUGIMOTO K., OTSUKI Y., TSUGAWA H., KANDA M. (1996). Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 93: 7783-7788

KIM S., LEE S., LEE I. (2012). Alteration of Phytotoxicity and Oxidant Stress Potentialby Metal Oxide Nanoparticles in Cucumis sativus. Water Air Soil Pollut DOI 10.1007/s11270-011-1067-3

KUREPA J., PAUNESKU T., VOGT S., ARORA H., RABATIC B.M., LU J.(2010). Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nanoletters 10: 2296- 302

LARUE C., KHODJA H., HERLIN-BOIME N., BRISSET F., FLANK A.M., FAYARD B., CHAILLOU S., CARRIÈRE M. (2010). Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. Nanosafe: International Conference on Safe Production and Use of Nanomaterials IOP Publishing Journal of Physics: Conference Series 304 (2011) 012057 doi:10.1088/1742-6596/304/1/012057

LEE C.W., MAHENDRA S., ZODROW K., LI D., TSAI Y.C., BRAAM J., ALVAREZ P.J.J. (2010). Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry 29: 669–675

LIN B.L., SHEN X.D., CUI S. (2007). Application of nanosized Fe3O4 in anticancer drug carriers with target-orientation and sustained-release properties. Biomed. Mater. 2: 132

LIN D.H., XING B.S. (2008). Root Uptake and Phytotoxicity of ZnO Nanoparticles. Environ. Sci. Technol. 42: 5580–5585

LIN D. H., XING B. S. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root elongation. Environ. Pollut. 150: 243–250

LISCH D. (2009). Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60: 43–66

LOGEMANN J., SCHELL J., WILLMITZER L. (1987). Improved method for the isolation of RNA from plant tissues. Anal Biochem 163: 16–20

MEISSNER R., JACOBSON Y., MELAMED S., LEVYATUV S., SHALEV G., ASHRI A., ELKIND Y., LEVY A.A. (1997). A new model system for tomato genetics. The Plant Journal 12: 1465–1472

MORIN R.D., O'CONNOR M.D., GRIFFITH M., KUCHENBAUER F., DELANEY A., PRABHU A.L.,ZHAO Y., MCDONALD H., ZENG T., HIRST M. (2008). Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 18: 610–621

MORTAZAVI A., WILLIAMS B.A., MCCUE K., SCHAEFFER L., WOLD B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5: 621 -628

NAVARRO E., BAUN A., BEHRA R., HARTMANN N. B., FILSER J., MIAO A. J., QUIGG A., SANTSCHI P. H., SIGG L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17: 372

RUFFINI CASTIGLIONE M., GIORGETTI L., GERI C., CREMONINI R. (2011). The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J. Nanopart. Res. 13: 2443–2449

SCHIEFELBEIN J.W. (2000). Constructing a plant cell: The genetic control of root hair development. Plant Physiol. 124: 1525-1531

SCHMIDT W., SCHIKORA A. (2001). Different Pathways Are Involved in Phosphate and Iron Stress-Induced Alterations of Root Epidermal Cell Development. Plant Physiology 125: 2078-2084

YANG F., HONG F. S., YOU W. J., LIU C., GAO F. Q., WU C., YANG P. (2006). Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol. Trace Elem. Res. 110: 179–190

YI D. K., LEE S. S., YING J. Y. (2006). Synthesis and Applications of Magnetic Nanocomposite Catalysts. Chem. Mater. 18: 2459–2461

ZHANG J., YU C., KRISHNASWAMY L., PETERSON T. (2011). Transposable elements as catalysts for chromosome rearrangements. Plant Chromosome Engineering. Methods in Molecular BiologyEds Springer 701: 315-326

ZHENG L., HONG F., LU S., LIU C. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 106: 279–297

ZHU H., HAN J., XIAO Q.J., JIN Y. (2008). Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit. 10: 685–784.

Downloads

Published

2012-06-17

How to Cite

Giordani, T., Fabrizi, A., Guidi, L., Natali, L., Giunti, G., Ravasi, F., … Pardossi, A. (2012). RESPONSE OF TOMATO PLANTS EXPOSED TO TREATMENT WITH NANOPARTICLES. EQA - International Journal of Environmental Quality, 8(8), 27–38. https://doi.org/10.6092/issn.2281-4485/3748

Issue

Section

Articles