Molecular understanding of biochar aging on their properties and environmental significances
DOI:
https://doi.org/10.6092/issn.2281-4485/11816Abstract
Biochar can be applied in various fields, such as carbon sequestration, pollution control, and soil restoration. Biochar unveiled a newly boulevard for sequestration of carbon has presented potential to enhance the productivity of agriculture. Biochar aging process changes its chemical and physical properties, with the formation of a variety of biochar derived organic materials. These changes have important effects for transport and bioavailability of contaminants and nutrients. In this review, render an overview on biochar aging, centering on its structural and chemical properties, and its impact on agriculture productivity and environment. After aging, biochar underwent chemical and structural alteration, such as the introduced functional groups, increased negative charge on surface, higher O: C ratio and enhanced cation exchange capacity. These alterations particularly formation of functional groups and high specific surface area substantially improve nutrient retention and soil fertility by increasing the amount of exchangeable cations in the soil. Therefore, a clear understanding of biochar aging process and their potential impacts on physiochemical and molecular properties of biochar as well as on soil can help to manage soil health in a better way without significantly affecting the surrounding environment.
References
A. Bagreev, T. Bandosz, D. Locke, Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer, Carbon. 39(2001) 1971-1979. https://doi.org/10.1016/S0008-6223 (01)00026-4.
A. Cross, S.P. Sohi, A method for screening the relative long-term stability of biochar, Glob. Change Biol. Bioenergy. 5 (2013) 215-220. https://doi.org/10.1111/gcbb.12035.
A. Enders, K. Hanley, T. Whitman, S. Joseph, and J. Lehmann, Characterization of biochars to evaluate recalcitrance and agronomic performance, Bioresour. Technol. 114 (2012) 644-653. doi:10.1016/j.biortech.2012.03.022.
A. Ghaffar, S. Ghosh, F. Li, X. Dong, D. Zhang, M. Wu, H. Li , B. Pan, Effect of biochar aging on surface characteristics and adsorption behavior of dialkyl phthalates, Environ. Pollut. 206 (2015)502-509. DOI: 10.1016/j.envpol.2015.08.001.
A. Hilscher, K. Heister, C. Siewert, H. Knicker, Mineralization and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil, Org. Geochem. 40 (2009) 332-342. https://doi.org/10.1016/j.orggeochem.2008.12.004.
A. Keith, B. Singh, B.P. Singh, Interactive priming of biochar and labile organic matter mineralization in a Smectite-rich soil, Environ. Sci. Technol. 45 (2011) 9611-9618. https://doi.org/10.1021/es202186j.
A. Rasmuson, K. VanNess, C.A. Ron, W.P. Johnson, Hydrodynamic versus surface interaction impacts of roughness in closing the gap between favorable and unfavorable colloid transport conditions, Environ. Sci. Technol. 53 (2019) 2450–2459.https:// doi.org/10.1021/acs.est.8b06162.
A. Silber, I. Levkovitch, E.R. Graber, pH-dependent mineral release and surface properties of corn straw biochar: agronomic implications, Environ. Sci. Technol., 2010, 44, pp. 9318–9323. DOI: 10.1021/es101283d.
A.R. Zimmerman, Abiotic and microbial oxidation of laboratory-produced black Carbon (biochar), Environ. Sci. Technol. 44(2010) 1295-1301. https://doi.org/10.1021/es903140c.
A.U. Rajapaksha, S.S. Chen, D.C. Tsang, M. Zhang, M. Vithanage, S. Mandal, B. Gao, N.S. Bolan, Y.S. Ok, Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification, Chemosphere, 148 (2016) 276-29. DOI: 10.1016/j.chemosphere.2016.01.043.
B. Chen, D. Zhou, L. Zhu, Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures, Environ. Sci. Technol. 42(2008) 5137-5143. https://doi.org/10.1021/es8002684.
B. Chen, W.H. Huang, Effects of compositional heterogeneity and nano-porosity of raw and treated biomass-generated soot on adsorption and absorption of organic contaminants, Environ. Pollut. 159(2011) 550-556. DOI: 10.1016/j.envpol.2010.10.010.
B. Liang, J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O’Neill, J.O. Skjemstad, J. Thies, F.J. Luizao, J. Petersen, E.G. Neves, Black carbon increases cation exchange capacity in soils, Soil Sci. Soc. Am. J. 70(2006) 1719-1730. doi:10.2136/sssaj2005.0383.
B. Singh, Y. Fang, C.T. Johnston, A Fourier-transform infrared study of biochar aging in soils, Soil Sci. Soc. Am. J. 80(2016) 613-622. doi: 10.2136/sssaj2015.11.0414.
B. Sun, F. Lian, Q. Bao, Z. Liu, Z. Song, L. Zhu, Impact of low molecular weight organic acids (LMWOAs) on biochar micropores and sorption properties for sulfameth-oxazole. Environ. Pollut. 214 (2016) 142-148. DOI: 10.1016/j.envpol.2016.04.017.
B. Vandecasteele, T. Sinicco, T. D’Hose, T. Vanden C. Nest, Mondini, Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake, J. Environ. Manag. 168(2016), 200-209. DOI: 10.1016/j.jenvman.2015.11.045.
B. Wang, J. Lehmann, K. Hanley, R. Hestrin, A. Enders, Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH, Chemosphere. 138 (2015) 120-126. DOI: 10.1016/j.chemosphere.2015.05.062.
B.S. Archanjo, J.R. Araujo, A.M. Silva, R.B. Capaz, N.P.S. Falcao, A. Jorio, C.A. Achete, Chemical analysis and molecular models for Calcium–Oxygen–Carbon interactions in black carbon found in fertile Amazonian Anthrosoils, Environ. Sci. Technol. 48(2014) 7445-7452. https://doi.org/10.1021/es501046b.
C. Mondini, T. Sinicco, B. Vandecasteele, T. D’Hose, Potential of biochar in composting: Effect on process performance and greenhouse gas emissions, Acta. Hortic. 1146(2016) 251-256. DOI: 10.17660/ActaHortic.2016.1146.33.
C. Naisse, C. Girardin, R. Lefevre, A. Pozzi, R. Maas, A. Stark, Effect of physical weathering on the carbon sequestration potential of biochars and hydro chars in soil. GCB Bioenergy. 7(2015) 488-496. https://doi.org/10.1111/gcbb.12158.
C. Trigo, K.A. Spokas, L. Cox, W.C. Koskinen, Influence of Soil Biochar Aging on Sorption of the Herbicides MCPA, Nicosulfuron, Terbuthylazine, Indaziflam, and Fluoroethyldiaminotriazine, J. Agric. Food Chem. 62(2014) 10855-10860. https://doi.org/10.1021/jf5034398.
C. Zhang, C. Lai, G. Zeng, D. Huang, C. Yang, Y. Wang, Y. Zhou, M. Cheng, Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution, Water Res. 95(2016) 103-112. DOI: 10.1016/j.watres.2016.03.014.
C.A. Masiello, Y. Chen, X. Gao, S. Liu, H.Y. Cheng, M.R. Bennett, J.A. Rudgers, D.S. Wagner, K. Zygourakis, J.J. Silberg, Biochar and microbial signaling: production conditions determine effects on microbial communication, Environ. Sci. Technol. 47(2013) 11496-11503. doi: 10.1021/es401458s.
C.H. Cheng, J. Lehmann, Ageing of black carbon along a temperature gradient. Chemosphere. 75(2009) 1021-1027. doi:10.1016/chemosphere. 2009.01.045.
C.H. Cheng, J. Lehmann, M.H. Engelhard, Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence, Geochim. Cosmochim. Acta. 72(2008) 1598-1610. https://doi.org/10.1016/j.gca.2008.01.010.
C.I. Czimczik, C.A. Masiello, Controls on black carbon storage in soils, Global Biogeochemical Cycles. 21(2007)1-8. https://doi.org/10.1029/2006GB002798.
C.I. Kammann, H.P. Schmidt, N. Messerschmidt, S. Linsel, D. Steffens, C. Muller, H.W. Koyro, P. Conte, S. Joseph, Plant growth improvement mediated by nitrate capture in co-composted biochar, Sci. Rep. 5(2015). 11080. https://doi.org/10.1038/srep11080.
C.L. Nagodavithane, B. Singh, Y. Fang, Effect of ageing on surface charge characteristics and adsorption behavior of cadmium and arsenate in two contrasting soils amended with biochar, Soil Res., 2(2014) 52155-163. DOI: 10.1021/es101283d.
C.L. Nagodavithane, B. Singh, Y. Fang, Effect of ageing on surface charge characteristics and adsorption behaviour of cadmium and arsenate in two contrasting soils amended with biochar, Soil Res. 52(2014) 155-163. https://doi.org/10.1071/SR13187.
C.M. Preston, M.W.I. Schmidt, Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions, Biogeosciences. 3(2006) 397-420. https://doi.org/10.5194/bg-3-397-2006.
D. Guerena, J. Lehmann, K. Hanley, A. Enders, C. Hyland, S. Riha, Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant Soil. 365(2012) 239-254. https://doi.org/10.1007/s11104-012-1383-4.
D. Jimenez-cordero, F. Heras, N. Alonso-morales, M.A. Gilarranz, J.J. Rodriguez, Ozone as oxidation agent in cyclic activation of biochar, Fuel Process. Technol. 139(2015) 42-48.
D. Kupryianchyk, S. Hale, A.R. Zimmerman, O. Harvey, D. Rutherford, S. Abiven, H. Knicker, H.P. Schmidt, C. Rumpel, G. Cornelissen, Sorption of hydrophobic organic compounds to a diverse suite of carbonaceous materials with emphasis on biochar, Chemosphere. 144(2016) 879-887. DOI: 10.1016/j.chemosphere.2015.09.055.
D.L. Jones, D.V. Murphy, M. Khalid, W. Ahmad, G. Edwards-Jones, T.H. DeLuca, Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated, Soil Biol. Biochem. 43(2011) 1723-1731. https://doi.org/10.1016/j.soilbio.2011.04.018.
E.H. Novotny, E.R. deAzevedo, T.J. Bonagamba, T.J. Cunha, B.E. Madari, V.D.M. Benites, M.H. Hayes, Studies of the compositions of humic acids from Amazonian Dark Earth soils, Environ. Sci. Technol. 41(2007) 400-405. https://doi.org/10.1021/es060941x.
G. Mastrolonardo, O. Francioso, M. Di Foggia, S. Bonora, C. Forte, G. Certini, Soil pyrogenic organic matter characterization by spectroscopic analysis: a study on combustion and pyrolysis residues, J. Soils Sediments. 15(2015) 769-780. https://doi.org/10.1007/s11368-014-1034-x.
G. Zhang, Q. Zhang, K. Sun, X. Liu, W. Zheng, Y. Zhao, Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures, Environ. Pollut. 159(2011) 2594-2601. DOI: 10.1016/j.envpol.2011.06.012.
G.G.F. Guimaraes, D.M. Paiva, R.B. Cantarutti, E.L. Reis, Volatilization of ammonia originating from urea treated with oxidized Charcoal, J. Brazillan Chem. Soc. 26 (2015) 1928-1935. http://dx.doi.org/10.5935/0103-5053.20150171.
H. Knicker, F.J. Gonzalez-Vila, R.Gonzalez-Vazquez, Biodegradability of organic matter in fire-affected mineral soils of southern Spain, Soil Biol. Biochem. 56 (2013) 31-39. https://doi.org/10.1016/j.soilbio.2012.02.021.
H. Lu, Z. Li, S. Fu, A. Mendez, G. Gasco, J. Paz-Ferreiro, Effect of biochar in cadmium availability and soil biological activity in an anthrosol following acid rain deposition and aging. Water Air Soil Pollut. 226 (2015) 1-11. https://doi.org/10.1007/s11270-015-2401-y.
H. Shindo, N. Ushijima, S. Hiradate, N. Figitake, H. Horna, Production and several properties of humic acids during decomposition process of charred plant materials in the presence of H2O2, Humic Subst. Res. 1(2004) 29-37.
H. Wu, C. Lai, G. Zeng, J. Liang, J. Chen, J. Xu, J. Dai, X. Li, J. Liu, M. Chen, The interactions of composting and biochar and their implications for soil amendment and pollution remediation:Areview,Crit.Rev.Biotechnol.37(2017)754-764. DOI:10.1080/07388551.2016.1232696.
H.H. Cho, K. Wepasnick, B.A. Smith, F.K. Bangash, D.H. Fairbrother, W.P. Ball, Sorption of aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon, Langmuir. 26 (2010) 967-981. https://doi.org/10.1021/la902440u.
J. Guo, B. Chen, Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components, Environ. Sci. Technol. 48(2014) 9103-9112. DOI: 10.1021/es405647e.
J. Major, C. Steiner, A. Downie, J. Lehmann, S. Joseph, Biochar effects on nutrient leaching. Biochar for environmental management, Environ. Sci. Technol. 2009. pp. 271. https://doi.org/10.4324/9781849770552.
J. Wang, X. Pan, Y. Liu, X. Zhang, Z. Xiong, Effects of biochar amendment in two soils on greenhouse gas emissions and crop production, Plant Soil, 360 (2012) 287–298. doi: 10.1111/gcbb.12376
J. Yu, X.W. Zhang, D. Wang, P. Li, Adsorption of methyl orange dye onto biochar adsorbent prepared from chicken manure, Water Sci. Technol. 77(2018), 1303-1312. DOI: 10.2166/wst.2018.003.
J.H. Yuan, R.K. Xu, H. Zhang, The forms of alkalis in the biochar produced from crop residues at different temperatures, Bioresour. Technol. 102 (2011) 3488-3497. DOI: 10.1016/j.biortech.2010.11.018.
J.W. Lee, M. Kidder, B.R. Evans, S. Paik, A.C. Buchanan, C.T. Garten, R.C. Brown, Characterization of biochars produced from cornstovers for soil amendment, Environ. Sci. Technol. 44(2010) 7970–7974. Doi: 10.1021/es101337x.
K. Ikeya, S. Yamamoto, A. Watanabe, Semiquantitative GC/MS analysis of thermochemolysis products of soil humic acids with various degrees of humification, Org. Geochem. 35(2004) 583-594. doi:10.1016/j.orggeochem.2003.12.004.
K. Jindo, H. Mizumoto, Y. Sawada, M.A. Sanchez-Monedero, T. Sonoki, Physical and chemical characterization of biochars derived from different agricultural residues, Biogeosciences. 11(2014) 6613-6621. https://doi.org/10.5194/bg-11-6613-2014.
K. Kalbitz, S. Solinger, J.H. Park, B. Michalzik, E. Matzner, Controls on the dynamics of dissolved organic matter in soils: a review, Soil Res. 165 (2000) 277-304.
K. Kumari, P. Moldrup, M. Paradelo, L.W. de Jonge, Phenanthrene sorption on biochar-amended soils: application rate, aging, and physicochemical properties of soil, Water Air Soil Pollut. 225(2014)1–13. 10.1007/s11270-014-2105-8.
K. Shi, Y. Xie, Y. Qiu, Natural oxidation of a temperature series of biochars: opposite effect on the sorption of aromatic cationic herbicides, Ecotoxicol. Environ. Saf. 114(2015) 102-108. DOI: 10.1016/j.ecoenv.2015.01.015.
K. Wiedner, C. Naisse, C. Rumpel, A. Pozzi, P. Wieczorek, B. Glaser, Chemical modification of biomass residues during hydrothermal carbonization-what makes the difference, temperature or feedstock? Org. Geochem. 54 (2013) 91-100. https://doi.org/10.1016/j.orggeochem.2012.10.006.
K.A. Spokas, J.M. Novak, C.E. Stewart, K.B. Cantrell, M. Uchimiya, M.G., DuSaire, Qualitative analysis of volatile organic compounds on biochar, Chemosphere, 85(2011) 869-882. DOI: 10.1016/j.chemosphere.2011.06.108.
L. Beesley, E. Moreno-Jiménez, J.L. Gomez-Eyles, E. Harris, B. Robinson, T. Sizmur, A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils, Environ. Pollut. 159 (2011) 3269–3282. doi:10.1016/j.envpol.2011.07.023.
L. Qian, B. Chen, Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process. J. Agric. Food Chem. 62(2014) 373-380. https://doi.org/10.1021/jf404624h.
L. Qian, M. Chen, B. Chen, Competitive adsorption of cadmium and aluminum onto fresh and oxidized biochars during aging processes, J. Soils Sediments. 15(2015)1130-1138. https://doi.org/10.1007/s11368-015-1073-y.
L.A, Biederman, W.S. Harpole, Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy. 5(2013)202-214. https://doi.org/10.1111/gcbb.12037.
M. Chen, D.J. Wang, F. Yang, X.Y. Xu, N. Xu, X.D. Cao, Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions, Environ. Pollut. 230 (2017) 540- 549. DOI: 10.1016/j.envpol.2017.06.101.
M. H. Duku, S. Gu, E.B. Hagan, Biochar production potential in Ghana-A review, Renew. Sust. Energ. Rev. 15(2011) 3539–3551. https://doi.org/10.1016/j.rser.2011.05.010
M. Inyang, E. Dickenson, The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: a review, Chemosphere. 134 (2015) 232-240. DOI: 10.1016/j.chemosphere.2015.03.072.
M. Keiluweit, P.S. Nico, M.G. Johnson, M. Kleber, Dynamic molecular structure of plant biomass-derived black carbon (biochar), Environ. Sci. Technol. 44 (2010) 1247–1253. https://doi.org/10.1021/es9031419.
M. Lawrinenko, D.A. Laird, R.L. Johnson, D. Jing, Accelerated ageing of biochars: Impact on ion exchange capacity, Carbon. 103(2016) 217–227. DOI: 10.1016/j.carbon.2016.02.096.
M. Seredych, D. Hulicova-Jurcakova, G.Q. Lu, T.J. Bandosz, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon, 46(2008) 1475-1488. https://doi.org/10.1016/j.carbon.2008.06.027.
M. Suarez-Abelenda, J. Kaal, M. Camps-Arbestain, H. Knicker, F. Macıas, Molecular characteristics of permanganate- and dichromate-oxidation-resistant soil organic matter from a black-C-rich colluvial soil. Soil Res. 52(2014) 164. DOI: 10.1071/SR13195.
M. Uchimiya, D.I. Bannon, L. H. Wartelle, Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil, J. Agric. Food Chem. 60 (2012) 1798-1809. https://doi.org/10.1021/jf2047898.
M. Vithanage, A.U. Rajapaksha, M. Zhang, S. Thiele-Bruhn, S.S. Lee, Y.S. Ok, Acid-activated biochar increased sulfamethazine retention in soils, Environ. Sci. Pollut. Res. Int. 22 (2015) 2175-2186. DOI: 10.1007/s11356-014-3434-2.
M.A. Sánchez-Monedero, M.L. Cayuela, A. Roig, K. Jindo, C. Mondini, N. Bolan, Role of biochar as additive in organic waste composting, Bioresource Technol. 247(2018) 1155-1164. DOI: 10.1016/j.biortech.2017.09.193.
M.D. Huff, J.W. Lee, Biochar surface oxygenation with hydrogen peroxide. J. Environ. Manage. 165 (2016) 17-21. DOI: 10.1016/j.jenvman.2015.08.046.
M.S. Khorram, D. Lin, Q. Zhang, Y. Zheng, H. Fang, Y. Yu, Effects of aging process on adsorption–desorption and bioavailability of fomesafen in an agricultural soil amended with rice hull biochar, J. Environ. Sci. 56(2017)180-191. DOI: 10.1016/j.jes.2016.09.012.
N. Ameloot, E.R. Graber, F.G.A. Verheijen, S. De Neve, Interactions between biochar stability and soil organisms: review and research needs, Eur. J. Soil Sci. 64(2013) 379–390. https://doi.org/10.1111/ejss.12064.
N. Borchard, J. Siemens, B. Ladd, A. Möller, W. Amelung, Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice, Soil Tillage Res. 144(2014) 184–194. doi.org/10.1016/j.still.2014.07.016.
N. Sultana, K. Ikeya, A. Watanabe, Partial oxidation of char to enhance potential interaction with soil, Soil Sci. 176(2011) 495-501.
N.R. Pandit, J. Mulder, S.E. Hale, V. Martinsen, H.P. Schmidt, G. Cornelissen, Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil, Sci. Total Environ. 625(2018) 1380–1389. DOI: 10.1016/j.scitotenv.2018.01.022
P.L. Ascough, M.I. Bird, S.M. Francis, T. Lebl, Alkali extraction of archaeological and geological charcoal: evidence for diagenetic degradation and formation of humic acids. J. Archaeol. Sci. 38(2011) 69-78. doi:10.1016/j.jas.2010.08.011.
P.M. Trompowsky, V.D.M. Benites, B.E. Madari, A.S. Pimenta, W.C. Hockaday, P.G. Hatcher, Characterization of humic like substances obtained by chemical oxidation of eucalyptus charcoal. Org. Geochem., 2005, 36, pp. 1480–1489.
R. Azargohar, S. Nanda, J.A. Kozinski, A.K. Dalai, R. Sutarto, Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel. 125 (2014) 90-100. https://doi.org/10.1016/j.fuel.2014.01.083.
R. Kookana, The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: a review, Aust. J. Soil Res. 48 (2010) 627–637. doi: 10.1071/sr10007
R. Mikutta, G.E. Schaumann, D. Gildemeister, S. Bonneville, M.G. Kramer, J. Chorover, O.A. Chadwick, G. Guggenberger, Biogeochemistry of mineral-organic associations across a long-term mineralogical soil gradient (0.3–4100 kyr), Hawaiian Islands, Geochimica et. Cosmochimica Acta. 73(2009) 2034-2060. Doi: 10.1016/j. gca.2008.12.028.
R.M.B.O. Duarte, A.P. Ferna ´ndez-Getino, A.C. Duarte, Humic acids as proxies for assessing different Mediterranean forest soils signatures using solid-state CPMAS 13C NMR spectroscopy, Chemosphere. 91(2013) 1556–1565. DOI: 10.1016/j.chemosphere.2012.12.043.
S. Jeffery, D. Abalos, M. Prodana, A.C. Bastos, J.W. van Groenigen, B.A. Hungate, F. Verheijen, Biochar boosts tropical but not temperate crop yields, Environ. Res. Lett. 12(2017) 053001. doi:10.1088/1748-9326/aa67bd
S. Joseph, , P.O.W. Doug, K. Dawson, D.R. Mitchell, A. Rawal, S. Taherymoosavi, L. Van Zwieten, R.U.S.T. Joshua, S., Donne, P. Munroe, P.A.C.E. Ben, Feeding biochar to cows: an innovative solution for improving soil fertility and farm productivity, Pedosphere, 25(2015). 666-679. Doi: 10.1016/S1002-0160(15)30047-3.
S. Mia, F.A. Dijkstra, B. Singh, Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium, Environ. Sci. Technol. 51 (2017) 8359-8367. DOI: 10.1021/acs.est.7b00647.
S. Mia, F.A. Dijkstra, B. Singh, Long-term ageing of biochar: a molecular understanding with agricultural and environmental implications, Adv. Agron. 141(2017) 1-51. https://doi.org/10.1016/bs.agron.2016.10.001.
S. Nishimura, N. Fujitake, S. Hiradate, H. Shindo, Physicochemical and spectroscopic characteristics of charred plant fragments in Japanese volcanic ash soils, Soil Sci. 177(2012) 695-700. Doi: 10.1097/SS.0b013e31828047ab.
S.D. Joseph, C.I. Kammann, J.G. Shepherd, P. Conte, H.P. Schmidt, N. Hagemann, A.M. Rich, C.E. Marjo, J. Allen, P. Munroe, D.R.G. Mitchell, S. Donne, K. Spokas, E.R. Graber, Microstructural and associated chemical changes during the composting of a high temperature biochar: Mechanisms for nitrate, phosphate and other nutrient retention and release, Sci. Total Environ. 618 (2018) 1210-1223, DOI: 10.1016/j.scitotenv.2017.09.200.
S.E. Hale, K. Hanley, J. Lehmann, A.R. Zimmerman, G. Cornelissen, Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar, Environ. Sci. Technol. 45(2011) 10445-10453. DOI: 10.1021/es202970x.
S.M. Yakout, Monitoring the changes of chemical properties of rice straw-derived biochars modified by different oxidizing agents and their adsorptive performance for organics, Bioremediation J. 19 (2015) 171-182. https://doi.org/10.1080/10889868.2015.1029115.
T. Hiemstra, S. Mia, P.B. Duhaut, B. Molleman, Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate, Environ. Sci. Technol. 47(2013) 9182–9189. https://doi.org/10.1021/es400997n.
T.J. Xia, P.K. Ma, Y. Qi, L.Y. Zhu, Z.C. Qi, W. Chen, Transport and retention of reduced graphene oxide materials in saturated porous media: Synergistic effects of enhanced attachment and particle aggregation, Environ. Pollut. 247 (2019) 383-391. https://doi.org/10.1039/C7EN01258F.
U. Hamer, B. Marschner, S. Brodowski, W. Amelung, Interactive priming of black carbon and glucose mineralisation, Org. Geochem. 35(2004) 823-830. DOI: 10.1016/j.orggeochem.2004.03.003.
V. Martinsen, V. Alling, N.L. Nurida, J. Mulder, S.E. Hale, C. Ritz, D.W. Rutherford, A. Heikens, G.D. Breedveld, G. Cornelissen, pH effects of the addition of three biochars to acidic Indonesian mineral soils, Soil Sci. Plant Nutr. 61(2015) 821–834. https://doi.org/10.1080/00380768.2015.1052985
W. Tang, G. Yue, W. Jing-Gui, H. Zhao-Qin, D. Jing-Yu, Structural changes of aged biochar and the influence on phenanthrene adsorption, J. Environ Sci. 35(2014). 2604-2611.
W. Yang, Y. Wang, J.Y. Shang, K.S. Liu, P. Sharma, J. Liu, B.G. Li, Antagonistic effect of humic acid and naphthalene on biochar colloid transport in saturated porous media, Chemosphere, 189 (2017) 556-564. DOI: 10.1016/j.chemosphere.2017.09.060.
X. Dong, G. Li, Q. Lin, X. Zhao, Quantity and quality changes of biochar aged for 5 year in soil under field conditions, Catena, 159(2017)136-143. https://doi.org/10.1016/j.catena.2017.08.008.
X. Ruan, Y. Sun, W. Du, Y. Tang, Q. Liu, Z. Zhang, W. Doherty, R.L. Frost, G. Qian, D.C.W. Tsang, Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review, Bioresour. Technol. 281(2019) 457-468. DOI: 10.1016/j.biortech.2019.02.105.
X. Wang, Y. Jing, Y. Cao, S. Xu, L. Chen, Effect of chemical aging of Alternanthera philoxeroides-derived biochar on the adsorption of Pb (II), Water Sci. Technol. 80 (2019) 329-338. DOI: 10.2166/wst.2019.276.
X.K. Zhang, A.K. Sarmah, N. Bolan, L. He, X.M. Lin, C.X. Tang, H.L. Wang, effect of aging process on adsorption of diethyl phthalate in soils amended with bamboo biochar, Chemosphere. 142(2016) 28-34. DOI: 10.1016/j.chemosphere.2015.05.037.
X.R. Jing, Y.Y. Wang, W.J. Liu, Y.K. Wang, H. Jiang, Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar, Chem. Eng. J. (2014) 248–174. https://doi.org/10.1016/j.cej.2014.03.006.
Y. Fang, B.P. Singh, B. Singh, Temperature sensitivity of biochar and native carbon mineralization in biochar amended soils, Agric. Ecosyst. Environ. 191 (2014) 158-167. https://doi.org/10.1016/S1002-0160(20)60013-3.
Y. Kuzyakov, I. Bogomolova, B. Glaser, Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis, Soil Biol. Biochem. 70 (2014) 229-236. https://doi.org/10.1021/es302545b.
Y. Xu, B. Chen, Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis, Bioresour. Technol. 164(2013) 485-493. doi: 10.1016/j.biortech.2013.07.086.
Y. Xue, B. Gao, Y. Yao, M. Inyang, M. Zhang, A.R. Zimmerman, K.S. Ro, Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests, Chem. Eng. J. 200 (2012) 673-680. https://doi.org/10.1016/j.cej.2012.06.116.
Z. Liu, W. Demisie, M. Zhang, Simulated degradation of biochar and its potential environmental implications, Environ. Pollut. 179 (2013) 146-152. DOI10.1016/j.envpol.2013.04.030.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ghulam Murtaza, Muhammad Usman, Zeeshan Ahmed, Rana Nauman Shabbir, Zia Ullah
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.