Characterization of Mg-rich natural serpentine clay mineral and removal of reactive blue 19 from aqueous solutions

Authors

  • Gökçe Didar Değermenci Degermenci, G.D.
  • Nejdet Değermenci
  • Nuray Emin
  • Elif Aşıkuzun

DOI:

https://doi.org/10.6092/issn.2281-4485/14033

Keywords:

adsorption, isotherm, kinetics, reactive blue 19, serpentine

Abstract

The present study assessed the use of serpentine clay as adsorbent to remove the anionic dye agent of Reactive Blue 19 (RB19) from aqueous solutions. Firstly, serpentine clay minerals were characterized using different instrumental techniques like XRD, FTIR, SEM, TGA, XRF and BET analysis. As a result of characterization, the clay sample was determined to be serpentine group and it contained antigorite as dominant mineral type. Later, adsorption studies were performed and the effects of initial pH, adsorbent dosage, initial dye concentration and temperature on RB19 removal were investigated. The experimental results determined the highest adsorption capacity was obtained as 44.8 mg/g with initial RB19 concentration of 200 mg/L, temperature 25°C, adsorbent concentration 2 g/L and pH 7. According to isotherm results, the Langmuir isotherm model was more suitable to explain adsorption of RB19 on serpentine compared to the Freundlich isotherm model. Additionally, adsorption data indicate the pseudo-second-order kinetic model is a better fit rather than the pseudo-first-order kinetic model.

References

ARSHAD R., BOKHARI T.H., KHOSA K.K., BHATTI I.A., MUNIR M., IQBAL M., IQBAL D.N., KHAN M.I., IQBAL M., NAZIR A. (2020) Gamma radiation induced degradation of anthraquinone Reactive Blue-19 dye using hydrogen peroxide as oxidizing agent. Radiation Physics and Chemistry, 168:108637. https://doi.org/10.1016/j.radphyschem.2019.108637

BAI Z.M., YANG N., GUO M., LI S. (2016) Antigorite: Mineralogical characterization and friction performances. Tribology International, 101:115–121. https://doi. org/10.1016/ j.triboint.2016.03.036

BALLOTIN F.C., NASCIMENTO M., VIEIRA S.S., BERTOLI A.C., CARMIGNANO O., DE CARVALHO TEIXEIRA A.P., LAGO R.M. (2020) Natural Mg silicates with different structures and morphologies: Reaction with K to produce K2MgSiO4 catalyst for biodiesel production. International Journal of Minerals, Metallurgy and Materials, 27:46–54. https://doi.org/10.1007/s12613-019-1891-9

BILAL M., RASHEED T., IQBAL H.M.N., LI C., WANG H., HU, H., WANG W., ZHANG X. (2018) Photocatalytic degradation, toxicological assessment and degradation pathway of C.I. Reactive Blue 19 dye. Chemical Engineering Research and Design, 129:384–390. https://doi. org/10.1016/j.cherd.2017.11.040

BLANCHARD G., MAUNAYE M., MARTIN G. (1984) Removal of heavy metals from waters by means of natural zeolites. Water Research, 18(12):1501–1507. https://doi. org/10.1016/0043-1354(84)90124-6

CAO C.Y., LIANG C.H., YIN Y., DU L.Y. (2017) Thermal activation of serpentine for adsorption of cadmium. Journal of Hazardous Materials, 329:222–229. https://doi. org/10.1016/j.jhazmat.2017.01.042

CAO C.Y., YU B., WANG M., ZHAO Y.Y., ZHAO Y.H. (2019) Adsorption properties of Pb2+ on thermal-activated serpentine. Separation Science and Technology, 54(18):3037- 3045. https://doi.org/10.1080/01496395.2019.1565776

CHAUDHARI A.U., PAUL D., DHOTRE D., KODAM K.M. (2017) Effective biotransformation and detoxification of anthraquinone dye reactive blue 4 by using aerobic bacterial granules. Water Research, 122:603–613. https://doi.org/10.1016/j.watres.2017.06.005

CHENG T.W., DING Y.C., CHIU J.P. (2002) A study of synthetic forsterite refractory materials using waste serpentine cutting. Minerals Engineering, 15(4):271–275. https://doi. org/10.1016/S0892-6875(02)00021-3

CHINOUNE K., BENTALEB K., BOUBERKA Z., NADIM A., MASCHKE U. (2016) Adsorption of reactive dyes from aqueous solution by dirty bentonite. Applied Clay Science, 123:64–75. https://doi.org/10.1016/j.clay.2016.01.006

CORUH S. (2008) The removal of zinc ions by natural and conditioned clinoptilolites. Desalination, 225(1-3):41–57. https://doi.org/10.1016/j.desal.2007.06.015

CRESPO M.A.R., GOMEZ D.P., GARCIA M.V.V., AMORES J.M.G., ESCRIBANO V.S. (2019) Characterization of serpentines from different regions by transmission electron microscopy, X-ray diffraction, BET specific surface area and vibrational and electronic spectroscopy. Fibers, 7(5):47. https://doi.org/10.3390/ fib7050047

DEGERMENCI G.D., DEGERMENCI N., AYVAOGLU V., DURMAZ E., CAKIR D., AKAN E. (2019) Adsorption of reactive dyes on lignocellulosic waste; characterization, equilibrium, kinetic and thermodynamic studies. Journal of Cleaner Production, 225:1220–1229. https://doi. org/10.1016/j.jclepro.2019.03.260

DEGERMENCI N., AKYOL K. (2020) Decolorization of the Reactive Blue 19 from Aqueous Solutions with the Fenton Oxidation Process and Modeling with Deep Neural Networks. Water Air & Soil Pollution, 231:72. https://doi.org/10.1007/s11270-020-4402-8

DLUGOGORSKI B.Z., BALUCAN R.D. (2014) Dehydroxylation of serpentine minerals: Implications for mineral carbonation. Renewable and Sustainable Energy Reviews, 31:353–367. https://doi.org/10.1016/j. rser.2013.11.002

EMRULLAHOGLU ABI C.B., GUREL S.B., KILINC D., EMRULLAHOGLU F. (2015) Production of forsterite from serpentine - Effects of magnesium chloride hexahydrate addition. Advanced Powder Technology, 26(3):947–953. https://doi.org/10.1016/j.apt.2015.03.011

FENG B., LU Y.P., FENG Q.M., DING P., LUO N. (2013) Mechanisms of surface charge development of serpentine mineral. Transactions of Nonferrous Metals Society of China, 23(4):1123–1128. https://doi.org/10.1016/S1003-6326(13)62574-1

FIL B.A., YILMAZ M.T., BAYAR S., ELKOCA M.T. (2014) Investigation of adsorption of the dyestuff astrazon red violet 3rn (basic violet 16) on montmorillonite clay. Brazilian Journal of Chemical Engineering, 31(1):171–182. https://doi.org/10.1590/S0104-66322014000100016

FREUNDLICH H. (1907) Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie, 57(1):385– 470. https://doi.org/10.1515/zpch-1907-5723

GURTEKIN G., ALBAYRAK M. (2006) Thermal Reaction of Antigotire: A XRD, DTA-TG Work. Bulletin of the Mineral Research and Exploration, 133(133):41–49.

HE C.-C., HU C.-Y., LO S.-L. (2016) Evaluation of sono- electrocoagulation for the removal of Reactive Blue 19 passive film removed by ultrasound. Separation and Purification Technology, 165:107–113. https://doi.org/10.1016/j.seppur.2016.03.047

HOREN H., SOUBRAND M., KIRCZAK J., JOUSSEIN E., NEEL C. (2014) Magnetic characterization of ferrichromite in soils developed on serpentinites under temperate climate. Geoderma, 235–236:83–89. https://doi.org/10.1016/j.geoderma.2014.06.026

HRSAK D., SUCIK G., LAZIC L. 2008. The thermophysical properties of serpentinite. Metalurgija, 47:29–31.

HUANG P., LI Z., CHEN M., HU H., LEI Z., ZHANG Q., YUAN W. (2017) Mechanochemical activation of serpentine for recovering Cu(II) from wastewater. Applied Clay Science, 149:1–7. https://doi.org/10.1016/j.clay.2017.08.030

ISAH U.A., ABDULRAHEEM G., BALA S., MUHAMMAD S., ABDULLAHI M. (2015) Kinetics, equilibrium and thermodynamics studies of C.I. Reactive Blue 19 dye adsorption on coconut shell based activated carbon. International Biodeterioration & Biodegradation, 102:265–273. https://doi.org/10.1016/j.ibiod.2015.04.006

KARUNARATNE P.C.T., ROHAN FERNANDO G.R. (2015) Non-Asbestos form building materials for Sustainable City Planning in Sri Lanka. In: International Conference on Cities, Peoples and Places; 26-27 October 2015; Sri Lanka. p. 1-13.

KHAN M.A.N., SIDDIQUE M., WAHID F., KHAN R. (2015) Removal of reactive blue 19 dye by sono, photo and sonophotocatalytic oxidation using visible light. Ultrasonics Sonochemistry, 26:370–377. https://doi.org/10.1016/j.ultsonch.2015.04.012

KOCAMAN S. (2020) Removal of methylene blue dye from aqueous solutions by adsorption on levulinic acid-modified natural shells. International Journal of Phytoremediation, 22:885–895. https://doi.org/10.1080/15226514.2020.1736512

KUSIOROWSKI R., ZAREMBAT., PIOTROWSKI J., ADAMEK J. (2012) Thermal decomposition of different types of asbestos. Journal of Thermal Analysis and Calorimetry, 109:693–704. https://doi.org/10.1007/s10973-012-2222-9

LACINSKA A.M., STYLES M.T., BATEMAN K., WAGNER D., HALL M.R., GOWING C., BROWN P.D. (2016) Acid-dissolution of antigorite, chrysotile and lizardite for ex situ carbon capture and storage by mineralisation. Chemical Geology, 437:153–169. https://doi.org/10.1016/j. chemgeo.2016.05.015

LAGERGREN S. (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 24:1–39.

LANGMUIR I., (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9):1361–1403. https://doi.org/ 10.1021/ja02242a004

LESCI I.G., BALDUCCI G., PIERINI F., SOAVI F., ROVERI N. (2014) Surface features and thermal stability of mesoporous Fe doped geoinspired synthetic chrysotile nanotubes. Microporous and Mesoporous Materials, 197:8– 16. https://doi.org/10.1016/j.micromeso.2014.06.002

LIMA E.C., ADEBAYO M.A., MACHADO F.M., (2015) Kinetic and equilibrium models of adsorption. In: Bergmann C.P., Machado F.M. (Eds.), Carbon Nanostructures. Springer International Publishing, pp.33–69. https://doi.org/10.1007/978-3-319-18875-1_3

LIN J., WANG L. (2009) Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second- order adsorption kinetic models for the removal of methylene blue by activated carbon. Frontiers of Environmental Science & Engineering in China, 3:320–324. https://doi. org/10.1007/s11783-009-0030-7

LU J., SUN M., YUAN Z., QI S., TONG Z., LI L., MENG Q. (2019) Innovative insight for sodium hexametaphosphate interaction with serpentine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 560:35–41. https://doi.org/10.1016/j.colsurfa. 2018.09.076

MA D., ZHU B., CAO B., WANG J., ZHANG J. (2017) Fabrication of the novel hydrogel based on waste corn stalk for removal of methylene blue dye from aqueous solution. Applied Surface Science, 422:944–952. https://doi.org/10.1016/j.apsusc.2017.06.072

MAROTO-VALER M.M., FAUTH D.J., KUCHTA M.E., ZHANG Y., ANDRESEN J.M. (2005) Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Processing Technology, 86(14-15):1627–1645. https://doi.org/10.1016/ j.fuproc.2005.01.017

MELLINI M., FUCHS Y., VITI C., LEMAIRE C., LINARES J. (2002) Insights into the antigorite structure from Mossbauer and FTIR spectroscopies. European Journal of Mineralogy, 14(1):97–104. https://doi.org/10.1127/0935-1221/2002/0014-0097

MELO R.P.F., BARROS NETO E.L., NUNES S.K.S., CASTRO DANTAS T.N., DANTAS NETO A.A. (2018) Removal of Reactive Blue 14 dye using micellar solubilization followed by ionic flocculation of surfactants. Separation and Purification Technology, 191:161–166. https://doi. org/10.1016/j.seppur.2017.09.029

MOMCILOVIC M.Z., RANDELOVIC M.S., PURENOVIC M.M., DORDEVIC J.S., ONJIA A., MATOVIC B. (2016) Morpho-structural, adsorption and electrochemical characteristics of serpentinite. Separation and Purification Technology, 163:72–78. https://doi. org/10.1016/j.seppur.2016.02.042

NGA N.K., THUY CHAU N.T., VIET P.H. (2020) Preparationandcharacterizationofachitosan/MgOcomposite for the effective removal of reactive blue 19 dye from aqueous solution. Journal of Science: Advanced Materials and Devices, 5(1):65–72. https://doi.org/10.1016/j.jsamd.2020.01.009

NIDHEESH P.V., ZHOU M., OTURAN M.A. (2018) An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197, 210–227. https://doi.org/10.1016/j.chemosphere.2017.12.195

OZDES D., GUNDOGDU A., KEMER B., DURAN C., SENTURK H.B., SOYLAK M. (2009) Removal of Pb(II)

ions from aqueous solution by a waste mud from copper mine industry: Equilibrium, kinetic and thermodynamic study. Journal of Hazardous Materials, 166(2-3):1480–1487. https://doi.org/10.1016/j.jhazmat.2008.12.073

PATTERSON A.L. (1939) The scherrer formula for X-ray particle size determination. Physical Review, 56(10):978– 982. https://doi.org/10.1103/PhysRev.56.978

RISTIC M., CZAKO-NAGY I., MUSIC S., VERTES A. (2011) Spectroscopic characterization of chrysotile asbestos from different regions. Journal of Molecular Structure, 993(1-3):120–126. https://doi.org/10.1016/j. molstruc.2010.10.005

ROUSHANI M., SAEDI Z., MUSA BEYGI T. (2016) Anionic dyes removal from aqueous solution using TMU-16 and TMU-16-NH2 as isoreticular nanoporous metal organic frameworks. Journal of the Taiwan Institute of Chemical Engineers, 66:164–171. https://doi.org/10.1016/j. jtice.2016.06.012

SHABAN M., ABUKHADRA M.R., KHAN A.A.P., JIBALI B.M. (2018) Removal of Congo red, methylene blue and Cr(VI) ions from water using natural serpentine. Journal of the Taiwan Institute of Chemical Engineers, 82:102–116. https://doi.org/10.1016/j.jtice.2017.10.023

SIMONIN J.P. (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300:254–263. https://doi.org/10.1016/j.cej.2016.04.079

TAHERI M., MOGHADDAM M.R.A., ARAMI M. (2013) Techno-economical optimization of Reactive Blue 19 removal by combined electrocoagulation/coagulation process through MOPSO using RSM and ANFIS models. Journal of Environmental Management, 128:798–806. https://doi. org/10.1016/j.jenvman.2013.06.029

TEIR S., REVITZER H., ELONEVA S., FOGELHOLM C.J., ZEVENHOVEN R. (2007) Dissolution of natural serpentinite in mineral and organic acids. International Journal of Mineral Processing, 83(1-2):36–46. https://doi.org/10.1016/j.minpro.2007.04.001

THOMMES M., KANEKO K., NEIMARK A.V., OLIVIER J.P., RODRIGUEZ-REINOSO F., ROUQUEROL J., SING, K.S.W. (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10):1051–1069. https://doi.org/10.1515/ pac-2014-1117

TIAN G., WANG W., ZONG L., WANG A. (2017) MgO/palygorskite adsorbent derived from natural Mg- rich brine and palygorskite for high-efficient removal of Cd(II) and Zn(II) ions. Journal of Environmental Chemical Engineering, 5(1):1027–1036. https://doi.org/10.1016/j. jece.2017.01.028

TKACZYK A., MITROWSKA K., POSYNIAK A. (2020) Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of The Total Environment, 717:137222. https://doi.org/10.1016/j.scitotenv.2020.137222

VASCONCELOS V.M., MIGLIORINI F.L., STETER J.R., BALDAN M.R., FERREIRA N.G., DE VASCONCELOS LANZA M.R. (2016) Electrochemical oxidation of RB-19 dye using a highly BDD/Ti: Proposed pathway and toxicity. Journal of Environmental Chemical Engineering, 4(4A):3900–3909. https://doi.org/10.1016/j. jece.2016.08.029

VITI C. (2010) Serpentine minerals discrimination by thermal analysis. American Mineralogist, 95(4):631–638. https://doi.org/10.2138/am.2010.3366

VITI C., GIACOBBE C., GUALTIERI A.F. (2011) Quantitative determination of chrysotile in massive serpentinites using DTA: Implications for asbestos determinations. American Mineralogist, 96(7):1003–1011. https://doi.org/10.2138/am.2011.3734

WANG J., QIN L., LIN J., ZHU J., ZHANG Y., LIU J., VAN DER BRUGGEN B. (2017) Enzymatic construction of antibacterial ultrathin membranes for dyes removal. Chemical Engineering Journal, 323:56–63. https://doi.org/10.1016/j.cej.2017.04.089

WANG X., CHEN A., CHEN B., WANG L. (2020) Adsorption of phenol and bisphenol A on river sediments: Effects of particle size, humic acid, pH and temperature. Ecotoxicology and Environmental Safety, 204:111093. https://doi.org/10.1016/j.ecoenv.2020.111093

YALCIN H., BOZKAYA O. (2006) Mineralogy and geochemistry of Paleocene ultramafic- and sedimentary- hosted talc deposits in the southern part of the Sivas Basin, Turkey. Clays and Clay Minerals, 54:333–350. https://doi.org/10.1346/ccmn.2006.0540305

YAN W., LIU D., TAN D., YUAN P., CHEN M. (2012) FTIR spectroscopy study of the structure changes of palygorskite under heating. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97:1052–1057. https://doi.org/10.1016/j.saa.2012.07.085

YASMIN R., AFTAB K., KASHIF M. (2019) Removal of microcystin-LR from aqueous solution using Moringa oleifera Lam. seeds. Water Science and Technology, 79(1):104–113. https://doi.org/10.2166/wst.2019.006

ZAYED A.M., ABDEL WAHED M.S.M., MOHAMED E.A., SILLANPAA M. (2018) Insights on the role of organic matters of some Egyptian clays in methyl orange adsorption: Isotherm and kinetic studies. Applied Clay Science, 166:49– 60. https://doi.org/10.1016/_j.clay.2018.09.013

ZHANG K., LI H., XU X., YU H. (2018) Synthesis of reduced graphene oxide/NiO nanocomposites for the removal of Cr(VI) from aqueous water by adsorption. Microporous and Mesoporous Materials, 255:7–14. https://doi.org/10.1016/j.micromeso.2017.07.037

ZHANG Y., WANG W., ZHANG J., LIU P., WANG A. (2015) A comparative study about adsorption of natural palygorskite for methylene blue. Chemical Engineering Journal, 262:390–398. https://doi.org/10.1016/j. cej.2014.10.009

Downloads

Published

2022-05-11

How to Cite

Değermenci, G. D., Değermenci, N., Emin, N., & Aşıkuzun, E. (2022). Characterization of Mg-rich natural serpentine clay mineral and removal of reactive blue 19 from aqueous solutions. EQA - International Journal of Environmental Quality, 47, 40–55. https://doi.org/10.6092/issn.2281-4485/14033

Issue

Section

Articles