Types of biomass burning in South East Asia and its impact on health
DOI:
https://doi.org/10.6092/issn.2281-4485/15539Keywords:
Biomass burning, peatland, Trans- boundary Haze, El Niño Southern oscillation, Indian Ocean DipoleAbstract
The frequency and severity of forest fires in Southeast Asia (SEA) have increased significantly since the 1960s, and particularly since the 1980s. Due to climate change and land - use changes, biomass burning have become more ubiquitous. Biomass burning (BB) is a significant issue of the Earth system that profoundly affects and being affected by global climate patterns, vegetation cover, and anthropogenic activities, and this is a major contributor of air pollution at numerous scales, from the local to the global. SEA fires are results from a variety of factors of both natural, the El Niño southern oscillation weather pattern and anthropogenic factors. It has been observed that the frequency and severity of BB episodes, such as excessive pollution, and haze, increase rapidly in ENSO (El Niño Southern Oscillation) and IOD (Indian Ocean Dipole) years, 1997/1998, 2006, 2009 and 2015 are some the examples in which such changes were witnessed. Rice straw open burning contributed the most to total crop residue open burning emissions, accounting for 19-97% which varies from species to species, which is responsible for episodic regional haze events in various parts of SEA. Peat swamp forest has been intensively logged and drained for monoculture cultivation, production of tree crops such as oil palm and Acacia species, and for farming and agribusinesses on both commercial and small scales. As a consequence, a drastic fall has been witnessed in the Southeast Asian peatland forest cover between 1990 to 2015 it has declined from 76% in 1990 to 29% in 2015. Despite the region’s high incidence of fires, there has been lack of scientific research on biomass burning and its impacts in SEA than other parts of the world. This review focuses on biomass burning related issues in Southeast Asia, focusing on the types of fires that occur and the natural and human factors that cause them.
References
Adam, M., Chiang, A., & Balasubramanian, R. (2019). Insights into characteristics of light absorbing carbonaceous aerosols over an urban location in Southeast Asia. Environmental Pollution, 257, 113425. https://doi.org/10.1016/j.envpol.2019.113425.
Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), 955-966. https://doi.org/10.1029/2000gb001382.
Andreae, M., Rosenfeld, D., Artaxo, P., Costa, A., Frank, G., Longo, K., & Silva-Dias, M. (2004). Smoking Rain Clouds over the Amazon. Science, 303(5662), 1337-1342. https://doi.org/10.1126/science.1092779.
Andreae, M., & Gelencsér, A. (2006). Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmospheric Chemistry And Physics, 6(10), 3131-3148. https://doi.org/10.5194/acp-6-3131-2006.
Ashok, K., Behera, S., Rao, S., Weng, H., & Yamagata, T. (2007). El Niño Modoki and its possible teleconnection. Journal of Geophysical Research, 112(C11). https://doi.org/10.1029/2006jc003798.
Barber, C. V. (2000). Trial by fire: Forest fires and forestry policy in Indonesia's era of crisis and reform. World Resources Institute, Forest Frontiers Initiative.
Budisulistiorini, S., Riva, M., Williams, M., Chen, J., Itoh, M., Surratt, J., & Kuwata, M. (2017). Light-Absorbing Brown Carbon Aerosol Constituents from Combustion of Indonesian Peat and Biomass. Environmental Science &Amp; Technology, 51(8), 4415-4423. https://doi.org/10.1021/acs.est.7b00397.
Cheong, Ngiam, Morgan, Pek, Tan, & Lai et al. (2019). Acute Health Impacts of the Southeast Asian Transboundary Haze Problem—A Review. International Journal Of Environmental Research And Public Health, 16(18), 3286. https://doi.org/10.3390/ijerph16183286.
Cohen, J. (2014). Quantifying the occurrence and magnitude of the Southeast Asian fire climatology. Environ. Res. Lett. 9 114018.
Cooper, H. V., Evers, S., Aplin, P., Crout, N., Dahalan, M. P. B., & Sjogersten, S. (2020). Greenhouse gas emissions resulting from conversion of peat swamp forest to oil palm plantation. Nature Communications, 11, 407. https://doi.org/10.1038/s41467-020-14298-w.
Couwenberg, J., Dommain, R., & Joosten, H. (2010). Greenhouse gas fluxes from tropical peatlands in south-east Asia. Global Change Biology, 16, 1715–1732. https://doi.org/10.1111/j.1365-2486.2009.02016.x.
DeFries, R., Hansen, A., Newton, A., & Hansen, M. (2005). Increasing isolation of protected areas in tropical forests over the past twenty years. Ecological Applications, 15(1), 19-26. https://doi.org/10.1890/03-5258.
Dommain, R., Dittrich, I., Giesen, W., & Wibisono, I. (2016). Ecosystem services, degradation and restoration of peat swamps in the South East Asian tropics. In Peatland Restoration and Ecosystem Services: Science, Policy and Practice. Ecological Reviews (pp. 253–288)
Duc, H., Bang, H., Quan, N., & Quang, N. (2021). Impact of biomass burnings in Southeast Asia on air quality and pollutant transport during the end of the 2019 dry season. Environmental Monitoring And Assessment, 193(9). https://doi.org/10.1007/s10661-021-09259-9.
Cullis, C., & Norris, A. (1972). The pyrolysis of organic compounds under conditions of carbon formation. Carbon, 10(5), 525-537. https://doi.org/10.1016/0008-6223(72)90092-9.
Ekadinata E, van Noordwijk M, Budidarsono S, Dewi S. 2013. Hotspots in Riau, haze in Singapore: the June 2013 event analysed. ASB Policy brief 33. Nairobi: ASB Partnership for the Tropical Forest Margins. Link: worldagroforestrycentre.org/re … ail&pub_no=PB0064-13.
Evers, S., Yule, C., Padfield, R., O'Reilly, P., & Varkkey, H. (2017). Keep wetlands wet: the myth of sustainable development of tropical peatlands - implications for policies and management. Global Change Biology, 23(2), 534-549. https://doi.org/10.1111/gcb.13422.
Frederick, W. H. and Leinbach, Thomas R. (2020). Southeast Asia. Encyclopedia Britannica. https://www.britannica.com/place/Southeast-Asia.
Fuller, D., & Murphy, K. (2006). The Enso-Fire Dynamic in Insular Southeast Asia. Climatic Change, 74(4), 435-455. https://doi.org/10.1007/s10584-006-0432-5.
Giglio, L., Csiszar, I., & Justice, C. (2006). Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. Journal Of Geophysical Research: Biogeosciences, 111(G2), n/a-n/a. https://doi.org/10.1029/2005jg000142.
Goldammer, J. G. 1999. Forests on Fire. Science 284 (5421): 1782-1783.
Guhardja, E., Fatawi, M., Sutisna, M., Mori, T., and Ohta, S (2003). Rainforest Ecosystems of East Kalimantan, El Nino, Drought, Fire and Human Impacts, Ecological Studies. Springer, New York, 140331pp.
Hansen, M., Stehman, S., Potapov, P., Loveland, T., Townshend, J., & DeFries, R. et al. (2008). Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data. Proceedings Of The National Academy Of Sciences, 105(27), 9439-9444. https://doi.org/10.1073/pnas.0804042105.
Harrison, M. E., Page, S. E., Limin, S. H. (2009). The global impact of Indonesian forest fires. Biologist 56, 156-163.
He, C., Miljevic, B., Crilley, L., Surawski, N., Bartsch, J., & Salimi, F. et al. (2016). Characterisation of the impact of open biomass burning on urban air quality in Brisbane, Australia. Environment International, 91, 230-242. https://doi.org/10.1016/j.envint.2016.02.030.
Hergoualc'h, K., & Verchot, L. (2011). Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review. Global Biogeochemical Cycles, 25(2), n/a-n/a. https://doi.org/10.1029/2009gb003718
Hooijer, A., Page, S., Canadell, J., Silvius, M., Kwadijk, J., Wösten, H., & Jauhiainen, J. (2010). Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences, 7(5), 1505-1514. https://doi.org/10.5194/bg-7-1505-2010.
Jaenicke, J., Englhart, S., & Siegert, F. (2010). Monitoring the effect of restoration measures in Indonesian peatlands by radar satellite imagery. Journal Of Environmental Management, 92(3), 630-638. https://doi.org/10.1016/j.jenvman.2010.09.029.
Jauhiainen, J., Takahashi, H., Heikkinen, J. E. P., Martikainen, P. J., & Vasander, H. (2005). Carbon fluxes from a tropical peat swamp forest floor. Global Change Biology, 11, 1788–1797. https://doi. org/10.1111/j.1365-2486.2005.001031.x
Kanabkaew, T., & Kim Oanh, N. T. (2011). Development of Spatial and Temporal Emission Inventory for Crop Residue Field Burning. Environmental Modeling & Assessment, 16(5), 453–464. https://doi.org/10.1007/s10666-010-9244-0.
Kao, H., & Yu, J. (2009). Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. Journal of Climate, 22(3), 615-632. https://doi.org/10.1175/2008jcli2309.1.
Khan, M., Latif, M., Saw, W., Amil, N., Nadzir, M., & Sahani, M. et al. (2016). Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment. Atmospheric Chemistry And Physics, 16(2), 597-617. https://doi.org/10.5194/acp-16-597-2016.
Ketterings, Q. M., Tri Wibowo, T., van Noordwijk, M., & Penot, E. (1999). Farmers' perspectives on slash-and-burn as a land clearing method for small-scale rubber producers in Sepunggur, Jambi Province, Sumatra, Indonesia. Forest Ecology and Management, 120(1-3), 157–169. https://doi.org/10.1016/s0378-1127(98)00532-5.
Kim Oanh, N. T., Permadi, D. A., Hopke, P. K., Smith, K. R., Dong, N. P., & Dang, A. N. (2018). Annual emissions of air toxics emitted from crop residue open burning in Southeast Asia over the period of 2010–2015. Atmospheric Environment, 187, 163–173. https://doi.org/10.1016/j.atmosenv.2018.05.061.
Kirono, D., Tapper, N., & McBride, J. (1999). Documenting Indonesian rainfall in the 1997/1998 El Nino event. Physical Geography, 20(5), 422-435. doi:10.1080/02723646.1999.10642687.
Klein, S., Soden, B., & Lau, N. (1999). Remote Sea Surface Temperature Variations during ENSO: Evidence for a Tropical Atmospheric Bridge. Journal Of Climate, 12(4), 917-932. https://doi.org/10.1175/1520-0442(1999)012<0917:rsstvd>2.0.co;2
Koe, L.C.C., Arellano, A.F., McGregor, J.L., 2001. Investigating the haze transport from 1997 biomass burning in Southeast Asia: its impact upon Singapore. Atmospheric Environment 35, 2723e2734.
Koh, L., Miettinen, J., Liew, S., & Ghazoul, J. (2011). Remotely sensed evidence of tropical peatland conversion to oil palm. Proceedings of the National Academy of Sciences, 108(12), 5127-5132. https://doi.org/10.1073/pnas.1018776108.
Kumari, S., Lakhani, A., & Kumari, K. (2021). Variation of carbon monoxide at a suburban site in the Indo-Gangetic Plain: Influence of long-range transport from crop residue burning region. Atmospheric Pollution Research, 12(9), 101166. https://doi.org/10.1016/j.apr.2021.101166.
Kug, J., Jin, F., & An, S. (2009). Two Types of El Niño Events: Cold Tongue El Niño and Warm Pool El Niño. Journal Of Climate, 22(6), 1499-1515. https://doi.org/10.1175/2008jcli2624.1.
Laskin, A., Laskin, J., & Nizkorodov, S. (2015). Chemistry of Atmospheric Brown Carbon. Chemical Reviews, 115(10), 4335-4382. https://doi.org/10.1021/cr5006167.
Li, P., Feng, Z., Jiang, L., Liao, C., & Zhang, J. (2014). A Review of Swidden Agriculture in Southeast Asia. Remote Sensing, 6(2), 1654-1683. https://doi.org/10.3390/rs6021654.
Li, T., Wang, B., Chang, C., & Zhang, Y. (2003). A Theory for the Indian Ocean Dipole–Zonal Mode*. Journal of The Atmospheric Sciences, 60(17), 2119-2135. https://doi.org/10.1175/1520-0469(2003)060<2119:atftio>2.0.co;2.
Lohman, D. J., Bickford, D., & Sodhi, N. S. (2007). ENVIRONMENT: The Burning Issue. Science, 316(5823), 376. https://doi.org/10.1126/science.1140278.
Maltby, E., C.P. Immirzi and R.J. Safford (Eds), 1996, Tropical lowland peatlands of Southeast Asia. IUCN, Gland, Switzerland.
Marlier, M., DeFries, R., Kim, P., Gaveau, D., Koplitz, S., & Jacob, D. et al. (2015). Regional air quality impacts of future fire emissions in Sumatra and Kalimantan. Environmental Research Letters, 10(5), 054010. https://doi.org/10.1088/1748-9326/10/5/054010.
Meyers, G., McIntosh, P., Pigot, L., & Pook, M. (2007). The Years of El Niño, La Niña, and Interactions with the Tropical Indian Ocean. Journal Of Climate, 20(13), 2872-2880. https://doi.org/10.1175/jcli4152.1.
Menon, S., Hansen, J., Nazarenko, L., & Luo, Y. (2002). Climate Effects of Black Carbon Aerosols in China and India. Science, 297(5590), 2250-2253. https://doi.org/10.1126/science.1075159.
Miettinen, J., & Liew, S. (2010). Status of Peatland Degradation and Development in Sumatra and Kalimantan. AMBIO, 39(5-6), 394-401. https://doi.org/10.1007/s13280-010-0051-2.
Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S., & Page, S. (2017). From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environmental Research Letters, 12(2), 024014. https://doi.org/10.1088/1748-9326/aa5b6f.
Munroe, D., Wolfinbarger, S., Calder, C., Shi, T., Xiao, N., Lam, C., & Li, D. (2008). The relationships between biomass burning, land-cover/-use change, and the distribution of carbonaceous aerosols in mainland Southeast Asia: a review and synthesis. Journal of Land Use Science, 3(2-3), 161-183. https://doi.org/10.1080/17474230802332241.
Murdiyarso, D. T., Tsuruta, H., Ishizuka, S., Hairiah, K., Palm, C.A., (2005). Green house fluxes slash and burn and alternative land uses practices in Sumatra, Indonesia. Slash and burn agriculture: the search of alternatives. Colombia University Press, New York, United States.
Othman, M., & Latif, M. (2013). Dust and Gas Emissions from Small-Scale Peat Combustion. Aerosol and Air Quality Research, 13(3), 1045-1059. https://doi.org/10.4209/aaqr.2012.08.0214.
Page, S., Rieley, J., & Banks, C. (2011). Global and regional importance of the tropical peatland carbon pool. Global Change Biology, 17(2), 798-818. https://doi.org/10.1111/j.1365-2486.2010.02279.x.
Pavagadhi, S., Betha, R., Venkatesan, S., Balasubramanian, R., & Hande, M. (2012). Physicochemical and toxicological characteristics of urban aerosols during a recent Indonesian biomass burning episode. Environmental Science and Pollution Research, 20(4), 2569-2578. https://doi.org/10.1007/s11356-012-1157-9.
Permadi, D.A., Kim Oanh, N.T., Assessment of biomass open burning emissions in Indonesia and potential climate forcing impact, Atmospheric Environment (2012), http://dx.doi.org/10.1016/j.atmosenv.2012.10.01.
Qi, L., & Wang, S. (2019). Fossil fuel combustion and biomass burning sources of global black carbon from GEOS-Chem simulation and carbon isotope measurements. Atmospheric Chemistry And Physics, 19(17), 11545-11557. https://doi.org/10.5194/acp-19-11545-2019.
Quah, E. (2002). Transboundary Pollution in Southeast Asia: The Indonesian Fires. World Development, 30(3), 429–441. https://doi.org/10.1016/s0305-750x(01)00122-x.
Radojevic, M. (2003). Chemistry of Forest Fires and Regional Haze with Emphasis on Southeast Asia. Pure And Applied Geophysics, 160(1-2), 157-187. https://doi.org/10.1007/s00024-003-8771-x.
Rastogi, N., Singh, A., Singh, D., & Sarin, M. (2014). Chemical characteristics of PM2.5 at a source region of biomass burning emissions: Evidence for secondary aerosol formation. Environmental Pollution, 184, 563-569. https://doi.org/10.1016/j.envpol.2013.09.037.
Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1(4), 221-227. https://doi.org/10.1038/ngeo156.
Rerkasem, K., & Rerkasem, B. (1995). Montane Mainland South-East Asia: agroecosystems in transition. Global Environmental Change, 5(4), 313-322. https://doi.org/10.1016/0959-3780(95)00065-v.
S. Robert Aiken (2004) Runaway Fires, Smoke‐Haze Pollution, and Unnatural Disasters in Indonesia, Geographical Review, 94:1, 55-79, https://doi.org/10.1111/j.1931-0846.2004.tb00158.x.
Saji, N., & Yamagata, T. (2003). Structure of SST and Surface Wind Variability during Indian Ocean Dipole Mode Events: COADS Observations*. Journal Of Climate, 16(16), 2735-2751. https://doi.org/10.1175/1520-0442(2003)016<2735:sosasw>2.0.co;2.
Saji, N., Goswami, B., Vinayachandran, P. et al. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999). https://doi.org/10.1038/43854.
Samsuddin, N., Khan, M., Maulud, K., Hamid, A., Munna, F., & Rahim, M. et al. (2018). Local and transboundary factors' impacts on trace gases and aerosol during haze episode in 2015 El Niño in Malaysia. Science Of The Total Environment, 630, 1502-1514. https://doi.org/10.1016/j.scitotenv.2018.02.289.
Sanchez, P.A., Palm, C.A., Vosti, S.A., Tomich, T.P., Kasyoki, J., 2005. Alternatives to slash and burn: challenge and approaches of an international consortium. Slash burn agriculture: the search for alternatives. Columbia University Press, New York, United States.
Schott, F., Xie, S., & McCreary, J. (2009). Indian Ocean circulation and climate variability. Reviews Of Geophysics, 47(1). https://doi.org/10.1029/2007rg000245.
Shikwambana, L. (2019). Long-term observation of global black carbon, organic carbon and smoke using CALIPSO and MERRA-2 data. Remote Sensing Letters, 10(4), 373–380.
Siegert, F., Ruecker, G., Hinrichs, A., & Hoffmann, A. (2001). Increased damage from fires in logged forests during droughts caused by El Niño. Nature, 414(6862), 437-440. https://doi.org/10.1038/35106547.
Silvius, M., and Diemont, H. (2007). Deforestation and degradation of peatlands. Peatlands international 2:32–34.
Singh, N., Banerjee, T., Deboudt, K., Chakraborty, A., Khan, M. F., & Latif, M. T. (2021). Sources, Composition, and Mixing State of Submicron Particulates over the Central Indo-Gangetic Plain. ACS Earth and Space Chemistry, 5(8), 2052–2065.
Sinha, V., Kumar, V., & Sarkar, C. (2014). Chemical composition of pre-monsoon air in the Indo-Gangetic Plain measured using a new air quality facility and PTR-MS: high surface ozone and strong influence of biomass burning. Atmospheric Chemistry and Physics, 14(12), 5921–5941
Sodhi, N., Posa, M., Lee, T., Bickford, D., Koh, L., & Brook, B. (2010). The state and conservation of Southeast Asian biodiversity. Biodiversity and Conservation, 19(2), 317-328. https://doi.org/10.1007/s10531-009-9607-5.
Streets, D., Bond, T., Carmichael, G., Fernandes, S., Fu, Q., & He, D. et al. (2003). An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal Of Geophysical Research: Atmospheres, 108(D21). https://doi.org/10.1029/2002jd003093.
Sun, Y., Jiang, Q., Xu, Y., Ma, Y., Zhang, Y., Liu, X., Li, W., Wang, F., Li, J., & Wang, P. (2016). Aerosol characterization over the North China Plain: Haze life cycle and biomass burning impacts in summer. Journal of Geophysical Research: Atmospheres, 121(5), 2508–2521.
Targino, A. C., Harrison, R. M., Krecl, P., Glantz, P., de Lima, C. H., & Beddows, D. (2019). Surface ozone climatology of South Eastern Brazil and the impact of biomass burning events. Journal of Environmental Management, 252, 109645. https://doi.org/https://doi.org/10.1016/j.jenvman.2019.109645.
Taylor, D. (2009). Biomass burning, humans and climate change in Southeast Asia. Biodiversity and Conservation, 19(4), 1025-1042. https://doi.org/10.1007/s10531-009-9756-6.
Tipayarom, A., & Kim Oanh, N. (2020). Influence of rice straw open burning on levels and profiles of semi-volatile organic compounds in ambient air. Chemosphere, 243, 125379. https://doi.org/10.1016/j.chemosphere.2019.125379.
Turetsky, M., Benscoter, B., Page, S., Rein, G., van der Werf, G., & Watts, A. (2015). Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8(1), 11-14. https://doi.org/10.1038/ngeo2325.
Underwood E. The polluted brain. Science 2017; 355: 342 -345.
Van der Werf, G., Randerson, J., Giglio, L., Collatz, G., Mu, M., & Kasibhatla, P. et al. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry And Physics, 10(23), 11707-11735. https://doi.org/10.5194/acp-10-11707-2010.
Vakkari, V., Beukes, J. P., Dal Maso, M., Aurela, M., Josipovic, M., & van Zyl, P. G. (2018). Major secondary aerosol formation in southern African open biomass burning plumes. Nature Geoscience, 11(8), 580–583.
Vongruang, P., & Pimonsree, S. (2020). Biomass burning sources and their contributions to PM10 concentrations over countries in mainland Southeast Asia during a smog episode. Atmospheric Environment, 228, 117414. https://doi.org/https://doi.org/10.1016/j.atmosenv.2020.117414.
Webster, P., Moore, A., Loschnigg, J. et al. Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401, 356–360 (1999). https://doi.org/10.1038/43848.
Wooster, M., Perry, G., & Zoumas, A. (2012). Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980–2000). Biogeosciences, 9(1), 317-340. https://doi.org/10.5194/bg-9-317-2012.
Wösten, J., Clymans, E., Page, S., Rieley, J., & Limin, S. (2008). Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia. CATENA, 73(2), 212-224. https://doi.org/10.1016/j.catena.2007.07.010.
Wright, E. L., Black, C. R., Turner, B. L., & Sjögersten, S. (2013). Environmental controls of temporal and spatial variability in CO2 and CH4 fluxes in a neotropical peatland. Global Change Biology, 19, 3775–3789.
Xie, S., Annamalai, H., Schott, F., & McCreary, J. (2002). Structure and Mechanisms of South Indian Ocean Climate Variability*. Journal Of Climate, 15(8), 864-878. https://doi.org/10.1175/1520-0442(2002)015<0864:samosi>2.0.co;2.
Yin, Y., Ciais, P., Chevallier, F., van der Werf, G., Fanin, T., & Broquet, G. et al. (2016). Variability of fire carbon emissions in equatorial Asia and its nonlinear sensitivity to El Niño. Geophysical Research Letters, 43(19), 10,472-10,479. https://doi.org/10.1002/2016gl070971.
Zaccone, C., Rein, G., D’Orazio, V., Hadden, R., Belcher, C., & Miano, T. (2014). Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions. Geochimica Et Cosmochimica Acta, 137, 134-146. https://doi.org/10.1016/j.gca.2014.04.018.
Zhai, P., Yu, R., Guo, Y., Li, Q., Ren, X., & Wang, Y. et al. (2016). The strong El Niño of 2015/16 and its dominant impacts on global and China's climate. Journal of Meteorological Research, 30 (3), 283-297. doi.org/10.1007/s13351-016-6101-3.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Sadashiv Chaturvedi, Mansi
This work is licensed under a Creative Commons Attribution 4.0 International License.