QSAR model for pka prediction of phenols

Authors

  • Hakim Hamada Materials and Environment Analytical Sciences Laboratory, University of Oum El Bouaghi

DOI:

https://doi.org/10.6092/issn.2281-4485/15686

Keywords:

Randomization, descriptors, regression, statistical, parameters, stability, external validation

Abstract

Descriptors (topological, mathematical and quantum) were used to generate quantitative construction property connections (QSPR) for the pKa of 80 phenols. The informational index was divided into 56 preparation and 24 test sets, and models were built using the preparation set's incomplete least squares (PLS) relapse. The consistency and predictive power of the best acquired QSAR models were achieved through internal approval, Y randomization, and external approval, and their pertinence area was confirmed by the influence technique. The benefits of the various direct relapse investigations' measurable boundaries. Standard deviation (S), standard deviation error of prediction (SDEP, External validation coefficient test), determination coefficient R², cross-validated R² (Q²) (SDEPext). The cross-validated R² (test Q²ext) values (95.68%, 95.22%, 0.304, 0.312, 0.292, and 96.24%, respectively) attest to the model's good fit.

References

BANDO P., MARTIN N., SEGURA J.L., SEOANE C., ORTI E., VIRUELA P.M., CANO F.H. (1994) Single-Component Donor-Acceptor Organic Semiconductors Derived from TCNQ. The Journal of Organic Chemistry, 59(16):4618–4629. https://doi.org/10.1021 /jo00095a042

BESSE P. (2003) Pratique de la modélisation statistique ; Publication du laboratoire de statistique et Probabilité ,P:11 http://www.math.univ-toulouse.fr/~besse/ pub/ modlin.pdf

CHATTERJE S., HADI A.S. (2006). Regression Analysis by Example. 4th Edition, John Wiley & Son, Inc., Hoboken, PP :366. ISBN: 978-0-470-05545-8

CONSONNI V., BALLABIO D., TODESCHINI R. (2010) Evaluation of model predictive ability by external validation techniques. Journal of Chemometrics, 24(3-4): 194–201. https://doi.org/10.1002/cem.1290.

DEARDEN J.C. (2016) The History and Development of Quantitative Structure-Activity Relationships (QSARs). International Journal of Quantitative Structure-Property Relationships, 1(1):1–44. https://doi. org/10.4018/IJQSPR.2016010101

ERIKSSON L., JAWORSKA J., WORTH A.P., CRONIN M.T.D., McDOWELL, R.M., GRAMATICA P. (2003) Methods for Reliability and Uncertainty Assessment and for Applicability Evaluations of Classification- and Regression-Based QSARs. Environmental Health Perspectives, 111(10): 1361–1375. https://doi.org/ 10.1289/ehp.5758.

HASTIE T., TIBSHIRANI R ., FRIEDMAN J H. (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition. (Springer Series in Statistics), pp:307 ISBN: 0387848576

HYPERCHEM™ RELEASE 7 (2000) Hypercube for Windows, Molecular Modeling System, http://www. hyper.com

LEARDI R., BOGGIA R., TERRILE M. (1992) Genetic algorithms as a strategy for feature selection. Journal of Chemometrics, 6(5):267–281. https://doi. org/10.1002/cem.1180060506

McKENNEY J.D., RICHARD A., WALLER C., NEWMAN M.C., GERBERICK F. (2000) The practice of structure activity relationships (SAR) in toxicology. Toxicological Sciences, 56(1):8-17. https://doi.org/10. 1093/toxsci/56.1.8

PAVAN M., MAURI A., TODESCHINI R. (2004). Total ranking models by the genetic algorithm variable subset selection (GA-VSS) approach for environmental priority settings. Analytical and Bioanalytical Chemistry, 380(3), 430–444. https://doi.org/10.1007/s00216-004-2762-3

PIRŠELOVÁ K.; BALÁŽ Š.; SCHULTZ T.W. (1996) Model-Based QSAR for Ionizable Compounds: Toxicity of Phenols Against Tetrahymena pyriformis. Archives of Environmental Contamination and Toxicology, 30:170–177. http://dx.doi.org/10.1007/BF00215795

PRESS, S. J., & WILSON, S. (1978) Choosing between Logistic Regression and Discriminant Analysis. Journal of the American Statistical Association, 73(364):699–705. http://dx.doi.org/10.1080/01621459.1978. 10480080

ROY K., KAR S., DAS R.N. (2015) Understanding the Basics of QSAR forApplications in Pharmaceutical Sciences and Risk Assessment, Academic Press. 1st Edition , pp. 254-258 ISBN 9780128016336

TODESCHINI R., BALLABIO D., CONSONNI V., MAURI A., PAVAN M. (2009) MOBYDIGS, version 1.1, Copyright TALETE srl.2004, http://www.disat. unimib.it

TODESCHINI R., CONSONNI V. (2000) Handbook of Molecular Descriptors. Methods and Principles in Medicinal Chemistry. https://doi.org/10.1002/ 9783527613106

TODESCHINI R., CONSONNI V. PAVAN V. ( 2006) DRAGON Software for the Calculation of Molecular Descriptors, Release 5.4 for Windows, Milano http://www.disat.unimib.it

Downloads

Published

2023-02-01

How to Cite

Hamada, H. (2022). QSAR model for pka prediction of phenols. EQA - International Journal of Environmental Quality, 52(1), 20–28. https://doi.org/10.6092/issn.2281-4485/15686

Issue

Section

Articles