Lead remediation techniques – Lessons for sustainable remediation of lead-contaminated sites in Zambia’s mining towns

Authors

  • Annette Lombe Department of Biological Sciences, School of Mathematics and Natural Sciences, Off Kitwe/Chingola Road, Itimpi, Kitwe
  • Rodrick S. Katete Department of Biological Sciences, School of Mathematics and Natural Sciences, Off Kitwe/Chingola Road, Itimpi, Kitwe

DOI:

https://doi.org/10.6092/issn.2281-4485/17928

Keywords:

Bioremediation, heavy metals, lead contamination, integrated remediation, microbial remediation, Kabwe

Abstract

Lead (Pb) contamination is a major problem worldwide. Studies have shown that lead pollution in Kabwe, one of the ten most polluted cities in the world, is the result of anthropogenic activities. These activities are mining, smelting, and the disposal of mine tailings from the closed lead-zinc mine. As in most countries adversely affected by lead contamination, Zambia is actively implementing remediation efforts to mitigate the negative consequences of Pb contamination on human, animal, plant, and environmental health. Heavy metals tend to accumulate in the environment, as they are not biodegradable, necessitating remediation. Critical analysis of the current literature review shows numerous remediation techniques, each with advantages and disadvantages. Highly efficient remediation strategies often combine two or more remediation techniques, which are improved and optimized over time. In addition, modern remediation techniques utilize environmentally sustainable genetic resources of living organisms, including microbes such as bacteria and fungi and plants that are tolerant or resistant to heavy metals. Bioremediation has unique advantages over other remediation techniques, making it sustainable for tackling lead contamination in Zambia. Pb toxicity's public health, environmental, and economic costs are too great to allow the status quo to continue.

References

AL-HASHIMI O., HASHIM K., LOFFIL E., CEBAŠEK T. M., NAKOUTI I. (2021) Remediation: Occurrence, migration, and adsorption modeling. Molecules, 26:5913.

ALSAFRAN M., SALEEM M.H., AL JABRI H., RIZWAN M., USMAN K. (2023) Principles and applicability of integrated remediation strategies for heavy metal Removal /Recovery from contaminated environments. Journal of Plant Growth Regulation, 42(6):3419-3440.

ATIGH Z.B.Q., HEIDARI A., SEPEHR A., BAHREINI M., MAHBUB K.R. (2020) Bioremediation of heavy metal contaminated soils originated from iron ore mines by bioaug-mentation with native cyanobacteria. Iranian Journal of Ener-gy and Environment, 11(2), 89–96. https://doi.org/10.5829/ijee.2020.11.02.01

AYANGBENRO A.S., BABALOLA O.O. (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International Journal of Environ-mental Research and Public Health, 14(1). https://doi.org/10.3390/ijerph14010094

BOSE-O'REILLY S., YABE J., MAKUMBA J., SCHUTZMEIER P., ERICSON B., CARAVANOS J. (2018) Lead intoxicated children in Kabwe, Zambia. Environmental research, 165, 420–424. https://doi.org/10.1016/j.envres.2017.10.024

CHAKDAR H., THAPA S., SRIVASTAVA A., SHUKLA P. (2022) Genomic and proteomic insights into the heavy metal bioremediation by cyanobacteria. Journal of Hazardous Mate-rials, Pre-print. https://doi.org/10.1016/j.jhazmat.2021.127609

CHANSA J.C. (2021) Houses built on copper: The environmental impact of current mining activities on “old” and “new” Zambian Copperbelt communities. In M. Larmer, E. Guene, B. Henriet, I. Pesa, & R. Taylor (Eds.), Across the Copperbelt: Urban & Social Change in Central Africa’s Borderland Communities (pp. 233–266). Boydell & Brewer. https://www.jstor.org/stable/j.ctv199tj8b.16

CHU D. (2018) Effects of heavy metals on soil microbial community. IOP Conference Series: Earth and Environmental Science, 113. https://doi.org/10.1088/1755-1315/113/1/012009

COLLIN M.S., VENKATRAMAN S.K., VIJAYAKUMAR N., KANIMOZHI V., ARBAAZ S.M., STACEY R.G.S., ANUSHA J., CHOUDHARY R., LVOV V., TOVAR G.I., SENATOV F., KOPPALA S., SWAMIAPPAN S. (2022) Bioaccumulation of lead (Pb) and its effects on human: a review. Journal of Hazardous Materials Advances, 7(100094). https://doi.org/10.1016/j.hazadv.2022.100094

KUMAR A., CABRAL-PINTO M.M.S., CHATURVEDI A. K., SHABNAM A.A., SUBRAHMANYAM G., MONDAL R., GUPTA D.K., MALYAN S.K., KUMAR S.S., KHAN S. A., YADAV K.K. (2020) Lead toxicity: Health hazards, influ-ence on food chain, and sustainable remediation approaches. International Journal of Environmental Research and Public Health, 17(7). https://doi.org/10.3390/ijerph17072179

KUPPUSAMY S., PALANISAMI T., MEGHARAJ M., VENKATESWARLU K., NAIDU R. (2016) Ex-situ reme-diation technologies for environmental pollutants: a critical perspective. In P. de Voogt (Ed.), Reviews of Environmental Contamination and Toxicology, 236:117–192. https://doi.org/10.1007/978-3-319-20013-2_2

LAIDLAW M.A.S., FILIPPELLI G.M., BROWN S., PAZ-FERREIRO J., REICHMAN S.M., NETHERWAY P., TRUSKEWYCZ A., BALL A.S., MIELKE H.W. (2017) Case studies and evidence-based approaches to addressing urban soil lead contamination. Applied Geochemistry, 83: 14–30. https://doi.org/10.1016/j.apgeochem.2017.02.015

LANDRIGAN P.J., FULLER R., ACOSTA N.J.R., ADEYI O., ARNOLD R., BASU N., BALDÉ A.B., BERTOLLINI R., BOSE-O’REILLY S., BOUFFORD J.I., BREYSSE P. N., CHILES T., MAHIDOL C., COLL-SECK A.M., CROPPER M.L., FOBIL J., FUSTER V., GREENSTONE M., HAINES A., ZHONG M. (2018) The Lancet Commission on pollution and health. The Lancet, 391, 462–512. https://doi.org/10.1016/S0140-6736(17)32345-0

MEGHARAJ M., VENKATESWARLU K., NAIDU R. (2014).Bioremediation. In P. Wexler (Ed.), Encyclopedia of Toxicology (3rd Editio, pp. 485–489). Elsevier Inc. Academic Press. https://doi.org/10.1016/B978-0-12-386454-3.01001-0

MMMD (2018) Zambia Mining and Environmental Remediation and Improvement Project (ZMERIP). https://www.mmmd.gov.zm/?page_id=1110

MUIMBA-KANKOLONGO A., BANZA LUBABA NKULU C., MWITWA J., KAMPEMBA F.M., MULELE NABUYANDA M. (2022) Impacts of trace metals pollution of water, food crops and ambient air on population health in Zambia and the DR Congo. Journal of Environmental and Public Health, 2022. https://doi.org/10.1155/2022/4515115

MUTTALEB W.H., ALI Z.H. (2022) Bioremediation an eco-friendly method for administration of environmental contaminants. International Journal of Applied Sciences and Technology, 4(2):21–32.

MWILOLA P.N., MUKUMBUTA I., SHITUMBANUMA V., CHISHALA B.H., UCHIDA Y., NAKATA H., NAKAYAMA S., ISHIZUKA M. (2020) Lead, zinc and cadmium accumulation, and associated health risks, in maize grown near the kabwe mine in Zambia in response to organic and inorganic soil amendments. International Journal of Environmental Research and Public Health, 17(23): 1–15.

KUMAR A., CABRAL-PINTO M.M.S., CHATURVEDI A. K., SHABNAM A.A., SUBRAHMANYAM G., MONDAL R., GUPTA D.K., MALYAN S.K., KUMAR S.S., KHAN S. A., YADAV K.K. (2020) Lead toxicity: Health hazards, influ-ence on food chain, and sustainable remediation approaches. International Journal of Environmental Research and Public Health, 17(7). https://doi.org/10.3390/ijerph17072179

KUPPUSAMY S., PALANISAMI T., MEGHARAJ M., VENKATESWARLU K., NAIDU R. (2016) Ex-situ reme-diation technologies for environmental pollutants: a critical perspective. In P. de Voogt (Ed.), Reviews of Environmental Contamination and Toxicology, 236:117–192. https://doi.org/10.1007/978-3-319-20013-2_2

LAIDLAW M.A.S., FILIPPELLI G.M., BROWN S., PAZ-FERREIRO J., REICHMAN S.M., NETHERWAY P., TRUSKEWYCZ A., BALL A.S., MIELKE H.W. (2017) Case studies and evidence-based approaches to addressing urban soil lead contamination. Applied Geochemistry, 83: 14–30. https://doi.org/10.1016/j.apgeochem.2017.02.015

LANDRIGAN P.J., FULLER R., ACOSTA N.J.R., ADEYI O., ARNOLD R., BASU N., BALDÉ A.B., BERTOLLINI R., BOSE-O’REILLY S., BOUFFORD J.I., BREYSSE P. N., CHILES T., MAHIDOL C., COLL-SECK A.M., CROPPER M.L., FOBIL J., FUSTER V., GREENSTONE M., HAINES A., ZHONG M. (2018) The Lancet Commission on pollution and health. The Lancet, 391, 462–512. https://doi.org/10.1016/S0140-6736(17)32345-0

MEGHARAJ M., VENKATESWARLU K., NAIDU R. (2014).Bioremediation. In P. Wexler (Ed.), Encyclopedia of Toxicology (3rd Editio, pp. 485–489). Elsevier Inc. Academic Press. https://doi.org/10.1016/B978-0-12-386454-3.01001-0

MMMD (2018) Zambia Mining and Environmental Remediation and Improvement Project (ZMERIP). https://www.mmmd.gov.zm/?page_id=1110

MUIMBA-KANKOLONGO A., BANZA LUBABA NKULU C., MWITWA J., KAMPEMBA F.M., MULELE NABUYANDA M. (2022) Impacts of trace metals pollution of water, food crops and ambient air on population health in Zambia and the DR Congo. Journal of Environmental and Public Health, 2022. https://doi.org/10.1155/2022/4515115

MUTTALEB W.H., ALI Z.H. (2022) Bioremediation an eco-friendly method for administration of environmental contaminants. International Journal of Applied Sciences and Technology, 4(2):21–32.

MWILOLA P.N., MUKUMBUTA I., SHITUMBANUMA V., CHISHALA B.H., UCHIDA Y., NAKATA H., NAKAYAMA S., ISHIZUKA M. (2020) Lead, zinc and cadmium accumulation, and associated health risks, in maize grown near the kabwe mine in Zambia in response to organic and inorganic soil amendments. International Journal of Environmental Research and Public Health, 17(23): 1–15.

THE WORLD BANK. (2019) Zambia-Mining and Environmental Remediation and Improvement Project (P154683). In Implementation Status & Results Report.

US EPA (2011) Palmerton Zinc Pile Palmerton, Carbon County, Pennsylvania superfund case study. www.cluin.org/ecotools

US EPA (2015) Bunker Hill Mining and Metallurgical Complex, Idaho, superfund case study. www.clu-in.org/ecotools

US EPA (2016) Anaconda Smelter, Montana, superfund case study. In EPA 542-F-16-001.

VILLA K., PARMAR J., VILELA D., SÁNCHEZ S. (2018) Metal-oxide-based microjets for the simultaneous removal of organic pollutants and heavy metals. ACS Applied Materials and Interfaces, 10(24), 20478–20486. https://doi.org/10.1021/acsami.8b04353

YABE J., NAKAYAMA S.M.M., NAKATA H., TOYOMAKI H., YOHANNES Y.B., MUZANDU K., KATABA A., ZYAMBO G., HIWATARI M., NARITA D., YAMADA D., HANGOMA P., MUNYINDA N.S., MUFUNE T., IKENAKA Y., CHOONGO K., ISHIZUKA M. (2020) Current trends of blood lead levels, distribution patterns and exposure variations amonghouhold members in Kabwe, Zambia. Chemosphere, 243(125412). https://doi.org/10.1016/j.chemosphere.2019.125412

YAMADA, D., HIWATARI, M., HANGOMA, P., NARITA, D., MPHUKA, C., CHITAH, B., YABE, J., NAKAYAMA, S. M. M., NAKATA, H., CHOONGO, K., & ISHIZUKA, M. (2020). Assessing the population-wide exposure to lead pollution in Kabwe, Zambia: An econometric estimation based on survey data. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-71998-5

YOHANNES, Y. B., NAKAYAMA, S. M. M., YABE, J., TOYOMAKI, H., KATABA, A., NAKATA, H., MUZANDU, K., MIYASHITA, C., IKENAKA, Y., CHOONGO, K., & ISHIZUKA, M. (2022). Methylation profiles of global LINE-1 DNA and the GSTP1 promoter region in children exposed to lead (Pb). Epigenetics, 1–13. https://doi.org/10.1080/15592294.2022.2123924

ZYAMBO G., YABE J., MUZANDU K., M’KANDAWIRE E., CHOONGO K., KATABA A., CHAWINGA K., LIAZAMBI A., NAKAYAMA S.M.M., NAKATA H., ISHIZUKA M. (2022) Human health risk assessment from lead exposure through consumption of raw cow milk from free-range cattle reared in the vicinity of a lead-zinc mine in Kabwe. International Journal of Environmental Research and Public Health, 19(4757). https://doi.org/10.3390/ijerph19084757

Downloads

Published

2024-01-10

How to Cite

Lombe, A., & Katete, R. S. (2024). Lead remediation techniques – Lessons for sustainable remediation of lead-contaminated sites in Zambia’s mining towns. EQA - International Journal of Environmental Quality, 59, 13–21. https://doi.org/10.6092/issn.2281-4485/17928

Issue

Section

Articles