Impact of substrate heterogeneity on anaerobic co-digestion process: a review

Authors

  • Ugochi Nneka Kemka Africa Centre of Excellence in Future Energies and Electrochemical systems (ACE-FUELS), Federal University of Technology, Owerri, Imo State
  • Toochukwu Ekwutosi Ogbulie Africa Centre of Excellence in Future Energies and Electrochemical systems (ACE-FUELS), Federal University of Technology, Owerri, Imo State
  • Kanayo Oguzie Africa Centre of Excellence in Future Energies and Electrochemical systems (ACE-FUELS), Federal University of Technology, Owerri, Imo State
  • Christogonus Oudney Akalezi Africa Centre of Excellence in Future Energies and Electrochemical systems (ACE-FUELS), Federal University of Technology, Owerri, Imo State
  • Emeka Emmanuel Oguzie Africa Centre of Excellence in Future Energies and Electrochemical systems (ACE-FUELS), Federal University of Technology, Owerri, Imo State

DOI:

https://doi.org/10.6092/issn.2281-4485/18498

Keywords:

Anaerobic Co-digestion, Substrate, Co-treatment, inhibitions, Biogas

Abstract

Anaerobic co-digestion is one potential strategy for maximizing the infrastructure's capacity for treatment while improving biogas output. It involves the addition of two or more substrates being digested simultaneously in the process. Anaerobic co-digestion's primary goal is to increase biogas, mostly bio-methane for domestic heating activities and electricity. By increasing bio-methane yields, anaerobic co-digestion becomes an effective and proficient method for reducing the limitations of mono-digestion and enhancing the commercial efficiency of existing anaerobic co-digestion amenities. By co-treating two or more waste streams, improved biogas generation can be accomplished through anaerobic co-digestion.

References

ABOUELENIEN F., KITAMURA Y., NISHIO N., NAKASHIMADA Y. (2009) Dry anaerobic ammonia–methane production from chicken manure. Journal of Applied Microbiology and Biotechnology, 82(4):757–764. https://doi.org/10.1007/s00253-009-1881-3

ACHINAS S., LI Y., ACHINAS V., EUVERINK G.J.W. (2019) Biogas potential from the anaerobic digestion of potato peels: Process performance and kinetics evaluation. Energies, 12: 2311. https://doi.org/10.3390/en12122311

AHMED S.F., MOFIJUR M., TARANNUM K., CHOWDHURY A.T., RAFA N., NUZHAT S., KUMAR P.S., VO D-V.N., LICHTFOUSE E., MAHLIA T. (2021) Biogas upgrading, economy and utilization: a review. Environmental Chemistry Letters, 19(6):4137-4164. https://doi.org/10.1007/s10311-021-01292-x

AJEEJ A., THANIKAL J.V., NARAYANAN C.M., KUMAR R.S. (2015) An overview of bio augmentation of methane by anaerobic co-digestion of municipal sludge along with micro-algae and waste paper. Renewable Sustainable Energy Review, 50:270–276. https://doi.org/10.1016/j.rser.2015.04.121

ALMOMANI F., BHOSALE R. (2020) Enhancing the production of biogas through anaerobic co-digestion of agricultural waste and chemical pre-treatments. Chemosphere, 255:126-805. https://doi.org/10.1016/j.chemosphere.2020.126805

ALVARADO A., MONTAÑEZ-HERNÁNDEZ L.E., PALACIO-MOLINA S.L., OROPEZA-NAVARRO R., LUÉVANOS-ESCAREÑO M.P., BALAGURUSAMY N. (2014) Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters. Frontiers in Microbiology, 5:597. https://doi.org/10.3389/fmicb.2014.00597

ATHANASOULIA E., MELIDIS P., AIVASIDIS A. (2012b) Anaerobic waste activated sludge co-digestion with olive mill wastewater. Journal of Water Science Technology, 65:2251–2257. https://doi.org/10.2166/wst.2012.139

AZMAN S., KHADEM A.F., VAN LIER J.B., ZEEMAN G., PLUGGE C.M. (2015) Presence and role of anaerobic hydrolytic microbes in conversion of lignocellulosic biomass for biogas production. Critical Reviews in Environmental Science and Technology, 45(23):2523–2564. https://doi.org/10.1080/10643389.2015.1053727

BATSTONE D. J., JENSEN P. D. (2011) Anaerobic Processes. Treatise on Water Science. P. Wilderer. Oxford, Elsevier. https://doi.org/10.1016.B978-0-444-53199-5.00

BAYR S., OJANPERÄ M., KAPARAJU P., RINTALA J. (2014) Long-term thermophilic mono-digestion of rendering wastes and co-digestion with potato pulp. Waste Management, 34: 1853–1859. https://doi.org/10.1016/j.wasman.2014.06.005

BOARI G., MARCINI M., TRULLI E. (1993) Anaerobic digestion of olive oil mill effluent pretreated and stored in municipal solid waste sanitary landfills. Journal of Water Science Technology, 28: 27–34. https://doi.org/10.2166/wst.1993.0071

BOROWSKI S., DOMANSKI J., WEATHERLEY L. (2014) Anaerobic co-digestion of swine and poultry manure with municipal sewage sludge. Journal of Waste Management, 34:513–521. https://dx.doi.org/10.1016/j.wasman.2013.10.022

BOROWSKI S., WEATHERLEY L. (2013) Co-digestion of solid poultry manure with municipal sewage sludge. Bioresource Technology, 142:345–352. https://dx.doi.org/10.1016/j.biortech.2013.05.047

BRES P., BEILY M.E., YOUNG B.J., GASULLA J., BUTTI M., CRESPO D., CANDAL R., KOMILIS D. (2018) Performance of semi-continuous anaerobic co-digestion of poultry manure with fruit and vegetable waste and analysis of digestate quality: a bench scale study. Waste Management, 82:276–284. https://doi.org/10.1016/j.wasman.2018.10.041

BUDYCH-GORZNA M., SMOCZYNSKI M., OLESKOWICZ-POPIEl P. (2016) Enhancement of biogas production at the municipal wastewater treatment plant by co-digestion with poultry industry waste. Applied Energy, 161:387-394. https://dx.doi.org/10.1016/j.apenergy2015..10.007

CHEN J.L., ORTIZ R., STEELE T.W., STUCKEY D.C. (2014) Toxicants inhibiting anaerobic digestion: A review. Biotechnology Advances, 32: 1523–1534. https://doi.org/10.1016/j.biotechadv.2014.10.005

CHUENCHART W., LOGAN M., LEELAYOU- THAYOTIN C., VISVANATHAN C. (2020) Enhancement of food waste thermophilic anaerobic digestion through synergistic effect with chicken manure. Journal of Biomass Bioenergy, 136:105541. https://doi.org/10.1016/j.biombioe.2020.105541

CHOW W.L., CHONG S., LIM J.W., CHAN Y.J., CHONG M.F., TIONG T.J., CHIN J.K., PAN G-T (2020) Anaerobic Co-digestion of wastewater sludge: A review of potential co-substrates and operating factors for improved methane yield. Processes, 8(1):39. https://doi.org/10.3390/pr8010039

DE LA RUBIA M.A., VILLAMIL J.A., RODRIGUEZ J.J., BORJA R., MOHEDANO A.F. (2018) Mesophilic anaerobic co-digestion of the organic fraction of municipal solid waste with the liquid fraction from hydrothermal carbonization of sewage sludge. Waste Management, 76: 315–322. https://doi.org/10.1016/j.wasman.2018.02.046

DE VRIEZE J., HENNEBEL T., BOON N., VERSTRAETE W. (2012) Methanosarcina: The redisco-vered methanogen for heavy duty biomethanation. Biore-source Technology, 112:1–9. https://doi.org/10.1016/j.biortech.2012.02.079

DE VRIEZE J., SAUNDERS A.M., HE Y., FANG J., NIELSEN P.H., VERSTRAETE W., BOON N. (2015) Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Resource, 75: 312–323. https://doi.org/10.1016/j.watres.2015.02.025

DUAN N., ZHANG D., LIN C., ZHANG Y., ZHAO L., LIU H., LIU Z. (2019) Effect of organic loading rate on anaerobic digestion of pig manure: Methane production, mass flow, reactor scale and heating scenarios. Journal of Environmental Management, 231:646–652. https://doi.org/10.1016/j.jenvman.2018.10.062

EL-MASHAD H.M., ZHANG R. (2010) Biogas production from co-digestion of diary manure and food waste. Bioresource Technology, 101:4021-4028. https://doi.org/10.1016/j.biortech.2010.01.027

FONOLL X., ASTALS S., DOSTA J., MATA-ALVAREZ J. (2015) Anaerobic co-digestion of sewage sludge and fruit wastes: evaluation of the transitory states when the co-substrate is changed. Journal of Chemical Engineering, 262: 1268–1274. http://dx.doi.org/10.1016/j.cej.2014.10.045

GOU C.L., YANG Z.H., HUANG J., WANG H.L, XU H.Y., WANG L.K. (2014) Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste. Journal of Chemosphere, 105: 146–151. https://doi.org/10.1016/j.chemosphere.2014.01.018

GRUNINGER R.J., PUNIYA A.K., CALLAGHAN T.M., EDWARDS J.E., YOUSSEF N., DAGAR S.S., FLIEGEROVA K., GRIFFITH G.W., FORSTER R., TSANG A. (2014) Anaerobic fungi (phylum Neocallima-stigomycota): Advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiology Ecology, 90:1–17. https://doi.org/10.1111/1574-6941.12383

HAGOS K., ZONG J., LI D., LIU C., LU X. (2017) Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renewable and Sustainable Energy Reviews, 76:1485-1496. http://dx.doi.org/10.1016/j.rser.2016.11.184

HAIDER M.R., ZESHAN S.Y., MALIK R.N., VISVANATHAN C. (2015) Effect of mixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production. Bioresource Technology, 190: 451-457. https://doi.org/10.1016/j.biortech.2015.02.105

HEO N.H., PARK S.C., LEE J.S., KANG H. (2003) Solubilization of waste activated sludge by alkaline pretreatment and biochemical methane potential (BMP) tests for anaerobic co-digestion of municipal organic waste. Journal of Water Science Technology, 48:211–219. https://doi.org/10.2166/wst.2003.0471

HIDAKA T., ARAI S., OKAMOTO S., UCHIDA T. (2013) Anaerobic co-digestion of sewage sludge with shredded grass from public green spaces. Bioresource Technology, 130:667–672. https://doi.org/10.1016/j.biortech.2012.12.068

HIDAKA T., WANG F., SAKURAI K., TSUMORI J., MINAMIYAMA M. (2016) Anaerobic co-digestion of grass and sewage sludge: Laboratory Experiments and Feasibility Analysis. Journal of Water and Environment Resources, 88: 2070–2081. https://doi.org/10.2175/106143016X14733681695320

HO D., JENSEN P., BATSTONE D. (2014) Effects of temperature and hydraulic retention time on acetotrophic pathways and performance in high-rate sludge digestion. Environmental Science and Technology, 48(11):6468-6476. https://doi.org/10.1021/es500074j

IMENI S.M., PELAZ L., CORCHADO-LOPO C., BUSQUETS A.M., PONSÁ S., COLÓN J. (2019) Techno-economic assessment of anaerobic co-digestion of livestock manure and cheese whey (Cow, Goat & Sheep) at small to medium dairy farms. Bioresource Technology, 291: 121872. https://doi.org/10.1016/j.biortech.2019.121872

JIANG Y., HEAVEN S., BANKS C. (2012) Strategies for stable anaerobic digestion of vegetable waste. Renewable Energy, 44:206-214. https://doi.org/10.1016/j.renene.2012.01.012

KABOURIS J.C., TEZEL U., PAVLOSTATHIS S.G., ENGELMANN M., DULANEY J.A., TODD A.C., GILLETTE R.A. (2009) Mesophilic and thermophilic anaerobic digestion of municipal sludge and fat, oil and grease. Water Environmental Resources, 81:476-485. https://doi.org/10.2175/106143008X357192

KAFLE G.K., KIM S.H. (2013) Anaerobic treatment of apple waste with swine manure for biogas production: batch and continuous operation. Journal of Applied Energy, 103:61–72. https://doi.org/10.1016/j.apenergy.2012.10.018

KAFLE G.K., KIM S.H. (2013) Effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products. Bioresource Technology, 142: 553–561. http://dx.doi.org/10.1016/j.biortech.2013.05.018

KARTHIKEYAN O.P., VISVANATHAN C. (2013) Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: A review. Reviews in Environmental Science and Bio/Technology, 12:257–284. https://doi.org/10.100/s11157-012-9304-9

KAUR M., VERMA Y.P., CHAUHAN S. (2020) Effect of Chemical Pretreatment of Sugarcane Bagasse on Biogas Production. Material Today Proceedings, 21:1937–1942. https://doi.org/10.1016/j.matpr.2020.01.278

KAZDA M., LANGER S., BENGELSDORF F.R. (2014) Fungi open new possibilities for anaerobic fermentation of organic residues. Energy, Sustainability and Society, 4:6. https://doi.org/10.1186/2192-0567-4-6

KEUCKEN A., HABAGIL M., BATSTONE D., JEPPSSON U., ARNELL M. (2018) Anaerobic Co-Digestion of Sludge and Organic Food Waste—Performance, Inhibition, and Impact on the Microbial Community. Energies, 11(9):2325. https://doi.org/10.3390/en11092325

KIM H., NAM J., SHIN H. (2011) A comparison study on the high-rate co-digestion of sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system. Bioresource Technology, 102(15):7272–7279. https://doi.org/10.1016/j.biortech.2011.04.088

KOECK D.E., PECHTL A., ZVERLOV V.V., SCHWARZ W.H. (2014) Genomics of cellulolytic bacteria. Current Opinion in Biotechnology, 29:171–183. https://doi.org/10.1016/j.copbio.2014.07.002

KOUPAIE E.H., DAHADHA S., LAKEH A.B., AZIZI A., ELBESHBISHY E. (2019) Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane produ- ction - A review. Journal of Environmental Management, 233:774–784. https://doi.org/10.1016/j.jenvman.2018.09.106

LABATUT R. A., PRONTO J.L. (2018) Sustainable Waste-to-Energy Technologies: Anaerobic Digestion. In: Trabold T.A., Babbitt C.W., (Eds), Sustainable Food Waste-To-energy Systems. Academic Press, pp: 47-67. https://doi.org/10.1016/B978-0-12-811157-4.00004-8

LEBUHN M., HANREICH A., KLOCKE M., SCHLÜTER A., BAUER C., PÉREZ C.M. (2014) Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe, 29: 10–21. https://doi.org/10.1016/j.anaerobe.2014.04.006

LI Q., LI H., WANG G.J., WANG X.C. (2017) Effects of loading rate and temperature on anaerobic co-digestion of food waste and waste activated sludge in a high frequency feeding system, looking in particular at stability and efficiency. Bioresource Technology, 237:231–239. https://doi.org/10.1016/j.biortech.2017.02.045

LI Y., ZHANG R., LIU X., CHEN C., XIAO X., FENG L., HE Y., LIU G. (2013) Evaluating methane production from anaerobic mono-and co-digestion of kitchen waste, corn stover, and chicken manure. Energy Fuels, 27(4):2085– 2091. https://doi.org/10/1021/ef400117f

LI J., RUI J., YAO M., ZHANG S., YAN X., WANG Y., YAN Z., LI X. (2015) Substrate type and free ammonia determine bacterial community structure in full-scale mesophilic anaerobic digesters treating cattle or swine manure. Frontiers in Microbiology, 6:1337. https://doi.org/10.3389/fmicb.2015.01337

LI Y., ACHINAS S., ZHAO J., GEURKINK B., KROONEMAN J., EUVERINK G.J.W. (2020) Co-digestion of cow and sheep manure: Performance evalu-ation and relative microbial activity. Renewable Energy, 153:553–563. https://doi.org/10.1016/j.renene.2020.02.041

LI Y., ZHANG R., CHEN C., LIU G., HE Y., LIU X. (2013) Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresource Technology, 149: 406–412. http://dx.doi.org/10.1016/j.biortech.2013.09.091

LI Y., ZHANG R., LIU G., CHEN C., HE Y., LIU X. (2013) Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresource Technology, 149:565–569. https://doi.org/10.1016/j.biortech.2013.09.063

LIEBETRAU J., STRÄUBER H., KRETZSCHMAR, J. DENYSENKO V., NELLES M. (2019) Anaerobic dige-stion. Advances in Biochemical Engineering/Biotech- nology,166:281-299. https://doi.org/10.1007/10_2016_67

LIEW L.N., SHI J., LI Y. (2012) Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass Bioenergy, 46:125–132. https://doi.org/10.1016/j.biombioe.2012.09.014

LIU C.Y., LI H., ZHANG Y.Y., LIU C. (2016) Improve biogas production from low-organic-content sludge through high-solids anaerobic co-digestion with food waste. Bioresource Technology, 219:252–260. https://doi.org/10.1016/j.biortech.2016.07.130

LIU H., WANG X., FANG Y., LAI W., XU S., LICHTFOUSE E. (2022) Enhancing thermophilic anaerobic co-digestion of sewage sludge and food waste with biogas residue biochar. Renewable Energy, 188: 465-475. https://doi.org/10.1016/j.renene.2022.02.044

LIU Y., XIAO Q., JIA Z., WANG C., YE X., DU J., KONG X., XI Y. (2021) Relieving ammonia nitrogen inhibition in high concentration anaerobic digestion of rural organic household waste by Prussian blue analogue

nanoparticles addition. Bioresource Technology, 330: 124979. https://doi.org/10.1016/j.biortech.2021.124979

MA S., WANG H., LI J., FU Y., ZHU W. (2019) Methane production performances of different compositions in lignocellulosic biomass through anaerobic digestion. Energy, 189: 116-190. https://doi.org/10.1016/j.energy.2019.116190

MANSOR A.M., LIMA J.S., ANIB F.N., HASHIMA H., HOA W.S. (2019) Characteristics of cellulose, hemicellulose and lignin of MD2 pineapple biomass. Chemical Engineering, 72:79–84. https://doi.org/:10.3303/CET1972014

MATA-ALVAREZ J., DOSTA J., ROMERO-GÜIZA M.S., FONOLL X., PECES M., ASTALS S. (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable Sustainable Energy Review, 36: 412–427. https://doi.org/10.1016/j.rser.2014.04.039

MCGENITY T.J., TIMMIS K.N., NOGALES B. (2016) Hydrocarbon and Lipid Microbiology Protocols; Springer: Berlin/Heidelberg, Germany. https://doi.org/10.1007/978-3-662-53118-1

MEHARIYA S., PATEL A.K., OBULISAMY P.K., PUNNIYAKOTTI E., WONG J.W.C. (2018). Co-digestion of food waste and sewage sludge for methane production: Current status and perspective. Bioresource Technology, 265: 519-531. https://doi.org/10.1016/j.biortech.2018.04.030

MONTANES R., SOLERA R., PEREZ M. (2015) Anaerobic co-digestion of sewage sludge and sugar beet pulp lixiviation in batch reactors: effect of temperature. Bioresource Technology, 180:177–184. https://doi.org/10.1016/j.biortech.2014.12.056

MUKTHAM R., BHARGAVA S., BANKUPALLI S., BALL A. (2016) A review on 1st and 2nd generation bioethanol Production- recent progress. Journal of Sustainable Bioenergy System, 2016: 72–92. https://doi.org/10.4236/jsbs.2016.63008

MUKUMBA P., MAKAKA G., MAMPHWELI S. (2016) Anaerobic digestion of donkey dung for biogas production. South African Journal of Science, 112: 1–4. https://doi.org/10.17159/sajs.2016/20160013

MUKUMBA P., MAKAKA G., MAMPHWELI S., XUZA V., PEACEMAKER M. (2019) Anaerobic digestion: An assessment of the biodegradability of a biogas digester fed with substrates at different mixing ratios. Waste-to-Energy (WTE), 107–126. ISBN: 978-1-53614-431-4

MUSTAFA A.M., POULSEN T.G., SHENG K. (2016) Fungal pretreatment of rice straw with Pleurotus ostreatus and

NARTKER S., AMMERMAN M., AURANDT J., STOGSDIL M., HAYDEN O., ANTLE C. (2014) incre-asing biogas production from sewage sludge anaerobic co-digestion process by adding crude glycerol from biodiesel industry. Journal of Waste Management, 34:2567–2571. https://doi.org/10.1016/j.wasman.2014.08.017

NGO T.A., SIM S.J. (2012) Dark fermentation of hydrogen from waste glycerol using hyperthermophilic eubacterium Thermotoga neapolitana. Environmental Program Sustainable, 31: 466–473. https:/doi.org/10.1002/ep.10578

OLSSON J., FENG X.M., ASCUE J., GENTILI F.G., SHABIIMAM M.A., NEHRENHEIM E., THORIN E. (2014) Co-digestion of cultivated micro-algae and sewage sludge from municipal waste water treatment. Bioresource Technology, 171:203–210. https://doi.org/10.1016/j.biortech.2014.08.069

OLSSON J., FORKMAN T., GENTILI F.G., ZAMBRANO J., SCHWEDE S., THORIN E., NEHRENHEIM E. (2018) Anaerobic co-digestion of sludge and micro-algae grown in municipal wastewater-A feasibility study. Journal of Water Science Technology, 77: 682–694. https://doi.org/10.2166/wst.2017.583

OWAMAH H.I., IZINYON O.C. (2015b) Development of simple-to-apply biogas kinetic models for the co-digestion of food waste and maize husk. Bioresource Technology, 194: 83-90. https://doi.org/10.1016/j.biortech.2015.06.136

PAHL O., FIRTH A., MACLEOD L., BAIRD J. (2008) Anaerobic co-digestion of mechanically biologically treated municipal waste with primary sewage sludge—a feasibility study. Bioresource Technology, 99: 3354–3364. https://doi.org/10.1016/j.biortech.2007.08.027

PARK J-K., KIM I.H., AHN Y.M., HIGUCHI S., LEE N.H. (2012) Assessment of dynamic kinetics and synergistic effect for anaerobic co-digestion of sewage sludge. Journal of Korea Society of Waste Management, 29(7):624–633. https://www.researchgate.net/publication/272822285

PARRALEJO A., ROYANO L., GONZÁLEZ J., GONZÁLEZ J. (2019) Small scale biogas production with animal excrement and agricultural residues. Industrial Crops Production, 131: 307–314. https://doi.org/10.1016/j.indcrop.2019.01.059

QUI L., DENG Y.F., WANG F., DAVARITOUCHAEE M., TAO Y.Q. (2019). A review on biochar-mediated anaerobic digestion with enhanced methane recovery. Renewable Sustainable Energy Review, 115:109373. https://doi.org/10.1016/j.rser.2019.109373

RABII A., ALDIN S., DAHMAN Y., ELBESHBISHY E. (2019) A Review on Anaerobic Co-Digestion with a focus on the Microbial Populations and the effect of multi-stage digester configuration. Energies, 12:1106. https://doi.org/10.3390/en12061106

RAHMAN A., SHAHAZI R., NOVA S.N.B, UDDIN M.R., HOSSAIN S., YOUSUF A. (2021) Biogas production from anaerobic co digestion using kitchen waste and poultry manure as substrate—Part 1: substrate ratio and effect of temperature. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01604-9

RAJAGOPAL R., MASSÉ D. I., SINGH G. (2013) A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 143: 632-641. https://doi.org/10.1016/j.biortech.2013.06.030

RASIT N., IDRIS A., HARUN R., GHANI W.A. K. (2015) Effects of lipid inhibition on biogas production of anaerobic digestion from oily effluents and sludges: An overview. Renewable Sustainable Energy Review, 45: 351–358. https://doi.org/10.1016/j.rser.2015.01.066

RAZAVIARANI V., BUCHANAN I.D. (2014) Reactor performance and microbial community dynamics during anaerobic co-digestion of municipal wastewater sludge with restaurant grease waste at steady state and overloading stages. Bioresource Technology, 172: 232–240. https://doi.org/10.1016/j.biortech.2014.09.046

REN G., MAO C., ZHAI N., WANG B., LIU Z., WANG X., YANG G. (2019) A new adjustment strategy to relieve inhibition during anaerobic co-digestion of food waste and cow manure. Sustainability 11(10):2819. https://doi.org/10.3390/su11102819

RUI J., LI J., ZHANG S., YAN X., WANG Y., LI X. (2015) The core populations and co-occurrence patterns of prokaryotic communities in household biogas digesters. Biotechnology Biofuels, 8:158. https://doi.org/10.1186/s13068-01-0339-3

SCARLAT N., FAHL F., DALLEMAND J.-F., MONFORTI F., MOTOLA V. (2018) A spatial analysis of biogas potential from manure in Europe. Renewable Sustainable Energy Review, 94:915–930. https://doi.org/10.1016/j.rser.2018.06.035

SCHNÜRER A. (2016) Biogas production: Microbiology and technology. In Anaerobes in Biotechnology; Springer: Berlin/Heidelberg, Germany, pp. 195–234. https://doi.org/10.1007/10_2016_5

SHAH F. A., MAHMOOD Q., RASHID N., PERVEZ A., RAJA I. A., SHAH M. M. (2015) Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renewable and Sustainable Energy Reviews, 42(0): 627-642. https://doi.org/10.1016/j.rser.2014.10.053

SHEN J., ZHAO C., LIU Y., ZHANG R., LIU G., CHEN C. (2019) Biogas production from anaerobic co-digestion of durian shell with chicken, dairy, and pig manures. Energy Conversion Management, 198: 110-535. https://doi.org/10.1016/j.enconman.2018.06.099

Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Applied Energy, 180: 661–671. https://doi.org/10.1016/j.apenergy.2016.07.135

NARAN E., TOOR U.A., KIM D. (2016) Effect of pre-treatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane produ-ction. International Journal of Biodeterioration and Biode-gradation, 113:17–21. https://doi.org/10.1016/j.ibiod.2016.04.011

SHRESTHA S., PANDEY R., ARYAL N., LOHANI S.P. (2023) Recent advances in co-digestion conjugates for anaerobic digestion of food waste. Journal of Environmental Management, 345:118785. https://doi.org/10.1016/j.jenvman.2023.118785

SILVESTRE G., FERNANDEZ B., BONMATI A. (2015) Addition of crude glycerine as strategy to balance the C/N ratio on sewage sludge thermophilic and mesophilic anaerobic co-digestion. Bioresource Technology, 193:377–385. https://doi.org/10.1016/j.biortech.2015.06.098

SILVESTRE G., ILLA J, FERNANDEZ B., BONMATI A. (2014) Thermophilic anaerobic co-digestion of sewage sludge with grease waste: effect of long chain fatty acids in the methane yield and its dewatering properties. Journal of Applied Energy, 117:87–94. https://doi.org/10.1016/j.apenergy.2013.11.075

SOLE-BUNDO M., CUCINA M., FOLCH M., TAPIAS J., GIGLIOTTI G., GARFI M., FERRER I. (2017) Assessing the agricultural reuse of the digestate from micro-algae anaerobic digestion and co-digestion with sewage sludge. Science Total Environment, 586:1–9. https://doi.org/10.1016/j.scitotenv.2017.02.006

SONG Z., ZHANG C. (2015) Anaerobic co-digestion of pretreated wheat straw with cattle manure and analysis of the microbial community. Bioresource Technology, 186: 128–135. https://doi.org/10.1016/j.biortech.2015.03.028

ST-PIERRE B., WRIGHT A.D.G. (2014) Comparative metagenomic analysis of bacterial populations in three full-scale mesophilic anaerobic manure digesters. Applied Microbiology and Biotechnology, 98: 2709–2717. https://doi.org/10.1007/s00253-013-5220-3

SUN J., ZHANG Y.C., PAN X.F., ZHU G.F. (2019) The effects of anionic and non-ionic surfactant on anaerobic co-digestion of sludge, food wastes and green wastes. Environment Technology, 40(19):2538–2547. https://doi.org/10.1080/09593330.2018.1446457

SUN Q., LI H., YAN J., LI L., YU Z., YU X. (2015) Selection of appropriate biogas upgrading technology—A review of biogas cleaning, upgrading and utilization. Renewable Sustainable Energy Review, 51:521–532. https://doi.org/10.1016/j.rser.2015.06.029

SUNDBERG C., AL-SOUD W.A., LARSSON M., ALM E., YEKTA S.S., SVENSSON B.H., SØRENSEN S.J., KARLSSON A. (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiology. Ecology, 85:612–626. https://doi.org/10.1111/1574-6941.12148

VELIS C.A., LONGHURST P.J., DREW G.H., SMITH R., POLLARD S.J.T. (2009) Bio-drying for mechanical-biological treatment of wastes: a review of process science and engineering. Bioresource Technology, 100(11): 2747–2761. https://doi.org/10.1016/j.biortech.2008.12.026

VÖGELI Y., LOHRI C.R., GALLARDO A., DIENER S., ZURBRÜGG C. (2014) Anaerobic digestion of biowaste in developing countries: practical information and case studies. Switzerland, Eawag – Swiss Federal Institute of Aquatic Science and Technology. https://doi.org/10.13140/2.1.2663.1045

WANG F., HIDAKA T., SAKURAI K., TSUMORI J. (2014a) Anaerobic co-digestion of steam-treated Quercus serrata chips and sewage sludge under mesophilic and thermophilic conditions. Bioresource Technology, 166: 318–325. https://doi.org/10.1016/j.biortech.2014.05.057

WANG F., HIDAKA T., TSUMORI J. (2014b) Enhancement of anaerobic digestion of shredded grass by co-digestion with sewage sludge and hyperthermophilic pretreatment. Bioresource Technology, 169:299–306. https://doi.org/10.1016/j.biotech.2014.06.053

WANG K., YIN J., SHEN D., LI N. (2014) Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculums: effect of pH. Bioresource Technology, 161:395–401. https://doi.org/10.1016/j.biortech.2014.03.088

WANG X., YANG G., FENG Y., REN G., HAN X. (2012) Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresource Technology, 120:78–83. https://doi.org/10.1016/j.biortech.2012.06.058

WANG X.L., ZHAO J.W., YANG Q, SUN J., PENG C., CHEN F., XU Q.X., WANG S.N., WANG D.B., LI X.M., ZENG G.M. (2017c) Evaluating the potential impact of hydrochar on the production of short-chain fatty acid from sludge anaerobic digestion. Bioresource Technology, 246: 234–241. https://doi.org/10.1016/j.biortech.2017.07.051

Downloads

Published

2024-07-22

How to Cite

Kemka, U. N., Ogbulie, T. E., Oguzie, K., Akalezi, C. O., & Oguzie, E. E. (2024). Impact of substrate heterogeneity on anaerobic co-digestion process: a review. EQA - International Journal of Environmental Quality, 62, 18–34. https://doi.org/10.6092/issn.2281-4485/18498

Issue

Section

Articles