Taguchi model optimization for Cu(II) removal using aqueous polyphenolic plant extract
DOI:
https://doi.org/10.6092/issn.2281-4485/19404Keywords:
Taguchi, optimization, polyphenols, Copper removalAbstract
Removal of Cu(II) using polyphenolic compounds was investigated under batch settings. The influence of extract concentration, initial concentration of metal ion, and contact time on Cu(II) removal was evaluated by Taguchi’s L9 OA; and Larger-the-better analysis and ANOVA was used to find the optimum experimental setup and the impact of various variables. The most significant factor was contact time. Maximum Cu(II) removal of 86.2% experimentally was achieved under the optimal conditions (5 mg/ml; 100 mg/L, and 3 hours) polyphenolic compounds of Phragmites Australis (Cav.) Trin. Steud. root.
References
ALARA O.R., ABDURAHMAN N.H. & UKAEGBU C.I. (2021) Extraction of phenolic compounds: A review. Current Research in Food Science, (4), 200 – 214. https://doi.org/10.1016/j.crfs.2021.03.011.
ALATABE, M. J. (2018) Adsorption of Copper (II) Ions from Aqueous Solution onto Activated Carbon Prepared from Cane Papyrus. Pollution, 4(4), 649-662 doı: 10.22059/poll.2018.249931.377
AL-SAYDEHA S.A., EL-NAASA M.H. & ZAİDİB S.J. (2017) Copper removal from industrial wastewater: A comprehensive review. Journal of Industrial and Engineering Chemistry 56, 35–44. http://dx.doi.org/10.1016/j.jiec.2017.07.026
AL-SHAMMARİ R.H.H., SHAİMAA S.M.A. & HUSSİN M.S. (2023) Efficient Copper Adsorption from Aqueous Solution by Dictyuchus sterile Pellets. Nature Environment and Pollution Technology 22 (2), 905-912. https://doi.org/10.46488/NEPT.2023.v22i02.033
ANOOPKUMAR A.N., REBELLO S., DEVASSY E., KAJ K.K., PUTHUR S., ANEESH E.M., SİNDHU R., BİNOD P. & PANDEY A. (2020) Phytoextraction of Heavy Metals. Methods for Bioremediation of Water and Wastewater Pollution, 267–276. http://dx.doi.org/10.1007/978-3-030-48985-4_12
AYODELE O., OLUSEGUN S.J., OLUWASİNA O.O., OKORONKWO E.A., OLANİPEKUN E.O., MOHALLEM N.D.S., GUİMARAES W.G., DE M. GOMES B.L.F., DE O. SOUZA G. & DUARTE H.A. (2021). Experimental and theoretical studies of the adsorption of Cu and Ni ions from wastewater by hydroxyapatite derived from eggshells. Environmental Nanotechnology, Monitoring & Management 15, 100439. https://doi.org/10.1016/j.enmm.2021.100439
CANO-AVENDAŇO B.A., CARMONA-HERNANDEZ J.C., RODRİGUEZ R.E., TABORDA-OCAMPO G. & GONZÁLEZ-CARREA C.H. (2021) Chemical properties of polyphenols: a review focused on anti-inflamatory and anti-viral medical application. Biomedicine 41 (1), 3–8. https://doi.org/10.51248/.v41i1.524.
DİNU M.V. & DRAGAN ES (2010) Evaluation of Cu2+, Co2+ and Ni2+ ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: Kinetics and isotherms. Chemical Engineering Journal 160, 157–163. doi:10.1016/j.cej.2010.03.029
FERNANDEZ M.T., MİRA M.L., FLORÊNCİO M.H. & JENNİNGS K.R. (2002) Iron and copper chelation by flavonoids: an electrospray mass spectrometry study. Journal of Inorganic Biochemistry, 2 (11), 105–111. https://doi.org/10.1016/S0162-0134(02)00511-1
GHORİ Z., IFTİKHAR H., BHATTİ M.F., NASAR-UM-MİNULLAH, SHARMA I., KAZİ A.G., AHMAD P. (2016) Phytoextraction: The use of Plants to Remove Heavy Metals from Soil. Plant Metal Interaction, 385–409. https://doi.org/10.1016/B978-0-12-803158-2.00015-1
HAN X., SHEN T. & LOU H. (2007) Dietary Polyphenols and Their Biological Significance. International Journal of Molecular Sciences, (8), 950–988. ISSN 14422 – 0067.
HASAN R. & SETİABUDİ (2019) Removal of Pb(II) from aqueous solution using KCC-1. Optimization by. response surface methodology (RSM). Journal of King Saud University – Science, (31), 1182–1188. https://doi.org/10.1016/j.jksus.2018.10.005
HU N., QİN H., CHEN X., HUANG Y., XU J. & HE H. (2022) Tannic acid assisted metal-chelate interphase toward highly stable Zn metal anodes in rechargeable aqueous Zinc-ion batteries, Frontiers in Chemistry, (10), 10–98. https://doi.org/10.3389/fchem.2022.981623.
JAŃCZAK-PİENİĄZĖK M., CICHOŃSKI J., MICHALIK P. & CHRZANOWSKI G. (2023) Effect of Heavy Metal Stress on Phenolic Compounds Accumulation in Winter Wheat Plants. Molecules, 28 (241), 1–15. https://doi.org/10.3390/molecules28010241.
Jİ G., BAO W., GAO G., AN B., ZOU H. & GAN S. (2012) Removal of Cu (II) from Aqueous Solution Using a Novel Crosslinked Alumina-Chitosan Hybrid Adsorbent. Chinese Journal of Chemical Engineering, 20(4), 641-8.
KABUBA J. & LUKUSA T. (2021) Synthesis of Gelatin-Cellulose Nanocrystals Hydrogel Membrane For Removal of Cu (II) and Co (II) From Mining Processes Wastewater. Research Square, https://doi.org/10.21203/rs.3.rs-383692/v1.
KABUBA J. & LUKUSA T. (2023) Process Optimization Using Response Response Surface Methodology for the Removal of Cu(II) and Co(II) from Aqueous solution Using Gelatin-Cellulose Nanocrystals Hydrogel Membrane. International Journal of Environment Science and Development, 14 (4), 252 – 258. https://doi.org/10.18178/ijesd.2023.14.4.1441.
KAFLE A., TİMİLSİNA A., GAUTAM A., ADHİKARİ K., BHATTARAİ A. & ARYAL N. (2022) Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, (8), 100203. https://doi.org/10.1016/j.envadv.2022.100203
KARAMAĆ M. (2009) Chelation of Cu(II), Zn(II), and Fe(II) by Tannin Constituents of Selected Edible Nuts. International Journal of Molecular Sciences, 10 (12), 5485–5497. https://doi.org/10.3390%2Fijms10125485.
KOUASSİ K.E., ABOLLE A., YAO K.B., BOA D., ADOUBY K., DROGUİ P. & TYAGİ R.D. (2018) Optimization of Rubber Seed Oil Transesterification to Biodiesel Using Experimental Designs and Artificial Neural Networks. Green and Substainable Chemistry, (8), 39–61. https://doi.org/10.4236/gsc.2018.81004.
KRİSHNAİAH K. & SHAHABUDEEN (2012) Applied Design of Experiments and Taguchi Methods, PHI Learning Private Limited, New Deli, ISBN–978–81–203–4527–0.
KUMAR P., DUSHENKOV V, MOTTO H, RASKIN I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ.Sci.Tech, (29),1232-l238. https://pubs.acs.org/doi/10.1021/es00005a014
KUMAR S. & PANDEY A. (2013) Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal, 1 – 16. http://dx.doi.org/10.1155/2013/162750.
MAİTY J. & RAY S.K. (2017) Removal of Cu(II) ion from water using sugar can bagasse cellulose and gelatin based composite hydrogels. International Journal of Biological Macromolecules, 97, 238–248. https://doi.org/10.1016/j.ijbiomac.2017.01.011.
MASSOUDİ NEJAD M.R., REZAZADEH AZARY M. & KHATİBY M. (2007) Treatment of wastewater in Planting Industry by chelate extraction method. Journal of Environmental Health Science & Engineering, 4 (1), 13–20.
MATİAS P.M.C., SOUSA J.F.M., BERNARDİNO E.F., VAREDA J.P., DURÃES L., ABREU P.E., MARQUES J.M.C., MURTİNHO D. & VALENTE A.J.M. (2023) Reduced Chitosan as a Strategy for Removing Copper Ions from Water. Molecules 28, 4110. https://doi.org/10.3390/molecules28104110
MİRA L., FERNANDEZ M.T., SANTOS M., ROCHA R., FLORÊNCİO M.H. & JENNİNGS K.R. (2002) Interactions of Flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radical research, 36 (11), 1199–208. https://doi.org/10.1080/1071576021000016463.
MİRANDA R.D.S., BOECHAT C.L., BOMFİM M.R. GONZAGA SANTOS J.A., COETHO D.G., ASSUNÇĀO S.J.R., CARDOSO K.M. & CARDOSO E.B. (2022) 3-Phytoremediation: A Substainable green approach for environmental cleanup, Phytoremediation Technology for the Removal of Heavy Metal and Other Contaminants from Soil and Water, 49–75. https://doi.org/10.1016/B978-0-323-85763-5.00017-9
MUTHUSARAVANAN S., SİVARAJASEKAR N., VİVEK J. S., PARAMASİVAN T., NAUSHAD M., PRAKASHMARAN J., GAYATHRİ V. & AL DUAİJ O.K. (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environmental Chemistry Letters. https://doi.org/10.1007/s10311-018-0762-3.
PANDEY V.C. & BAJPAİ O. (2019) Phytoremediation: From Theory Toward Practice, Phytomanagement of Polluted Sites, 1–49. https://doi.org/10.1016/B978-0-12-813912-7.00001-6.
RAJBHAR K., DAWDA H. & MUKUNDAN U. (2016) Comparatıve analysıs of extractıon and estımatıon of tea polyphenols, flavonoıds and antıoxıdant ın commercıally avaılable tea powders. Indian Journal of Plant Sciences, 5 (1), 11–26. ISSN: 2319–3824. ù
RASKİN I, SMİTH R.D., SALT D.E. (1997) Phytore-mediation of metals: Using plant to remove pollu-ants from environment. Current Opinion in Biotechnology, (8), 221–226. http://dx.doi.org/10.1016/S0958-1669(97)80106-1
RAZMİ B.. GHASEMİ-FASAEİ R. (2018) Investigation of Taguchi optimization, equilibrium, isotherms, and kinetic modeling for phosphorus adsorption onto natural zeolite of clinoptilolite type. Adsorption Science & Technology, 36 (7-8): 1470–1483. https://doi.org/10.1177/0263617418779738.
ŘÍHA M., KARLÍČKOVÁ J., FİLİPSKÝ T., MACÁKOVÁ K., ROCHA L., BOVİCELLİ P., SİLVESTRİ I.P., SASO L., JAHODÁŘ L., HRDİNA R. & MLADĚNKA P. (2014) In vitro evaluation of Copper – chelating properties of flavonoids. The Royal Society of Chemistry Advances, (4), 32628 – 32638. https://doi.org/10.1039/C4RA04575K.
RODRÍGUEZ-ARCE E. & SALDÍAS M. (2021) Antioxidant properties of flavonoid metal complexes and their potential inclusion in the development of novel strategies for the treatment against neurodegenerative diseases. Biomedicine & Pharmacotherapy, (14), 1112236. https://doi.org/10.1016/j.biopha.2021.112236.
SAİKİA R., GOSWAMİ R., BORDOLOİ N., SENAPATİ K.K., PANT K.K., KUMAR M. & KATAKİ R. (2017) Removal of arsenic and fluoride from aqueous solution by biomass based activated biochar: Optimization through response surface methodology. Journal of Environmental Chemical Engineering, 5: 5528–39
SAİNİ S., CHAWLA J. KUMAR R. & KAUR I. (2019) Response Surface Methodology (RSM) for optimization of cadmium ions adsorption using C16-6-16 incorporated mesoporous MCM-41. SN Applied Science, (1), 894. https://doi.org/10.1007/s42452-019-0922-5.
SARWAR N., IMRAN M., SHAHEEN M.R., ISHAQ W., KAMRAN A., MATLOOB A., REHİMB A., HUSSAİN S. (2016) Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, http://dx.doi.org/10.1016/j.chemosphere.2016.12.116.
SVİLOVİĆ S. MUŽEK M.N., NUİĆ I. & VUČENOVİĆ. (2019) Taguchi design of optimum process parameters for sorption of copper ions using different sorbents. Water Science & Technology, 80 (1), 98–108. https://doi.org/10.2166/wst.2019.249.
SYMONOWİCZ M. & KOLANEK M. (2012) Flavonoids and their properties to form chelate complexes. Biotechnology and Food Sciences, 76 (1), 35–41.
TAGUCHİ G. & KONİSHİ S. (1987). Taguchi Methods, Orthogonal Arrays and linear graphs: Tools for quality, American Supplier Intitute, American Supplier Institute, Dearborn, Michigan.
ULUCAN-ALTUNTAS K., UZUN H.I., USTUNDAG C.B.,DEBİK E. (2020) Adsorption of copper ion from aqueous solutions by well-crystalized nanosized hydroxyapatite. Mater. Res. Express 6,125545
VANKANTİ V.K.,GANTA V. (2014) Optimization of process parameters in drilling of GFRP composite using Taguchi method. Journal of Materials Research and Tech-nology, 3(1):35–41. https://doi.org/10.1016/j.jmrt.2013. 10.007.
YADAV M., SİNGH G., JADEJA R.N. (2021) Phytore-mediation for Heavy Metal Removal. Pollutants and Water Management: Resources, Strategies and Scarcity, (6):128 – 150.
YADOLAHİ K., GHADİ A., ALAVİ S.A. (2020) Optimi-zation of copper adsorption process from aqueous solution by Descurainia Sophia plant stem using Tachugi Method. Journal of Water and Environmental Nanotechnology, 5 (1):68–80. https://doi.org/10.22090/jwent.2020.01.006
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Trésor Lukusa, Eddy Mbuyu, Michel Kananda, Papy Musampa, André Nonda, Albert Kanangila, Marsi Mbayo, Emery Kalonda, John Kabuba
This work is licensed under a Creative Commons Attribution 4.0 International License.