In vivo and vitro studies of Cu-based nanoparticle toxicity in invertebrate worms: A review

Authors

  • Bhavya Singh Department of Environmental Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan
  • Kapil Kumar Department of Environmental Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan
  • Tanushree Kain Department of Environmental Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan
  • Devendra Singh Rathore Department of Environmental Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan

DOI:

https://doi.org/10.6092/issn.2281-4485/19632

Keywords:

Nanotechnology, Nanoparticles, Copper nanoparticles, Ecotoxicity, Worms

Abstract

Nanotechnology has been progressively developed recently and used extensively in all disciplines. These nanoscale particles overpower the use of conventional technological metal particles. Applications of Cu nanoparticles in agriculture enhance production and soil fertility, albeit their usage in excess amounts causes toxicity for soil fauna. So, we studied and collated the toxicity research trends of copper nanoparticles in the worm’s species (earthworms and enchytraeids) and their activities to assess the consequences of copper nanoparticles in varied sizes and oxidation states. Various Cu NPs have a high capacity for adsorbing biomolecules and interacting with biological receptors. Cu NPs can interact with the host organism’s inherent immunity and impair the host’s immune system when confronted with different dose concentrations. These artificially induced nanoparticles interpret the biological cell system and manipulate cell receptors in situ. Nations all across the world are currently attempting to establish a global policy on the regulation of nanomaterials as per their ecological safety. In some cases, they have been reported to be more hazardous than the comparable ions and micromaterials in some cases. As a result, nanoparticle safety research has far-reaching ramifications for national economies. These studies will be extremely significant in regulating the environmental outcome of nanoparticles.

References

ALAHDADI I., BEHBOUDI F., GOLTAPEH E.M., SANAVI A.M., MALAKOOTIKHAH J., GHAFARY S.M. (2011) The effects of CuO and ZnO nanoparticles on survival, reproduction, absorption, overweight and accumulation in Eisenia foetida earthworm tissues in two substrates. International Journal of Agronomy and Plant Production, 2(5):209-218.

AMORIM M.J.B., SCOTT-FORDSMAND J.J. (2012) Toxicity of copper nanoparticles and CuCl2 salt to Enchytraeus albidus worms: survival, reproduction and avoidance responses. Environmental Pollution.164:164-168. https://doi.org/10.1016/j.envpol.2012.01.015

AMORIM M.J., GOMES S.I., SOARES A.M., SCOTT-FORDSMAND J.J. (2012) Energy basal levels and allocation among lipids, proteins, and carbohydrates in Enchytraeus albidus: changes related to exposure to Cu salt and Cu nanoparticles. Water, Air, & Soil Pollution, 223:477-482. https://doi.org/10.1007/s11270-011-0867-9

AMORIM M.J., RÖMBKE J., SOARES A.M. (2005) Avoidance behaviour of Enchytraeus albidus: effects of benomyl, carbendazim, phenmedipham and different soil types. Chemosphere. 59(4):501-510. https://doi.org/10.1016/j.chemosphere.2005.01.057

ANJUM N.A., ADAM V., KIZEK R., DUARTE A.C., PEREIRA E., IQBAL M., AHMAD I. (2015) Nanoscale copper in the soil–plant system–toxicity and underlying potential mechanisms. Environmental Research, 38:306-325. https://doi.org/10.1016/j.envres.2015.02.019

ARMAND R., KOOHI M.K., SADEGHI HASHJIN G., KHODABANDE M. (2019) Short-term safety and risk evaluation of engine oil enriched by high concentrations copper nanoparticles on the skin. Nanomedicine Research Journal. 4(3):176-185. https://doi.org/10.22034/nmrj.2019.03.006

ARUOJA V., DUBOURGUIER H.C., KASEMETS K., KAHRU A. (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of The Total Environment, 407(4):1461-1468. https://doi.org/10.1016/j.scitotenv.2008.10.053

BATSMANOVA L.M., GONCHAR L.M., TARAN N.Y., OKANENKO A.A. (2013) Using a colloidal solution of metal nanoparticles as micronutrient fertiliser for cereals (Doctoral dissertation, Sumy State University).

BICHO R.C., FAUSTINO A.M.R., RÊMA A., SCOTT-FORDSMAND J.J., AMORIM M.J. (2021) Confirmatory assays for transient changes of omics in soil invertebrates–copper materials in a multigenerational exposure. Journal of Hazardous Materials, 402:123500. https://doi.org/10.1016/j.jhazmat.2020.123500

BICHO R.C., ROELOFS D., MARIEN J., SCOTT-FORDSMAND J.J., AMORIM M.J. (2020) Epigenetic effects of (nano) materials in environmental species–Cu case study in Enchytraeus crypticus. Environment International. 136:105447. https://doi.org/10.1016/j.envint.2019.105447

BICHO R.C., SANTOS F.C., SCOTT-FORDSMAND J.J., AMORIM M.J. (2017a) Effects of copper oxide nanomaterials (CuONMs) are life stage-dependent–full life cycle in Enchytraeus crypticus. Environmental Pollution, 24:117-124. https://doi.org/10.1016/j.envpol.2017.01.067

BICHO R.C., SANTOS F.C., SCOTT-FORDSMAND J.J., AMORIM M.J. (2017b) Multigenerational effects of copper nanomaterials (CuONMs) are different of those of CuCl2: exposure in the soil invertebrate Enchytraeus crypticus. Scientific Reports, 7(1):8457. https://doi.org/10.1038/s41598-017-08911-0

BOUVY C., MARINE W., SPORKEN R., SU B.L. (2007) Nanosized ZnO confined inside a Faujasite X zeolite matrix: Characterisation and optical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 300(1-2):145-149. https://doi.org/10.1016/j.colsurfa.2006.12.043

BRAZ-MOTA S., CAMPOS D.F., MACCORMACK T.J., DUARTE R.M., VAL A.L., ALMEIDA-VAL V.M. (2018) Mechanisms of toxic action of copper and copper nanoparticles in two Amazon fish species: Dwarf cichlid (Apistogramma agassizii) and cardinal tetra (Paracheirodon axelrodi). Science of the Total Environment, 630:168-1180. https://doi.org/10.1016/j.scitotenv.2018.02.216

CÁRDENAS-TRIVIÑO G., ELGUETA C., VERGARA L., OJEDA J., VALENZUELA A., CRUZAT C. (2017) Chitosan doped with nanoparticles of copper, nickel and cobalt. International Journal of Biological Macromolecules, 104:498-507. https://doi.org/10.1016/j.ijbiomac.2017.06.040

CIOFFI N., TORSI L., DITARANTO N., SABBATINI L., ZAMBONIN P.G., TANTILLO G., TRAVERSA E. (2004) Antifungal activity of polymer-based copper nanocomposite coatings. Applied Physics Letters. 85(12):2417-2419. https://doi.org/10.1063/1.1794381

CIOFFI N., TORSI L., DITARANTO N., TANTILLO G., GHIBELLI L., SABBATINI L., TRAVERSA E. (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chemistry of Materials, 17(21):5255-5262. https://doi.org/10.1021/cm0505244

GALAKTIONOVA L., GAVRISH I., LEBEDEV S. (2019) Bioeffects of Zn and Cu nanoparticles in soil systems. Toxicology and Environmental Health Sciences, 11:259-270. https://doi:org/10.1007/s13530-019-0413-5

GAUTAM A., RAY A., MUKHERJEE S., DAS S., PALK., DAS S., RAY, S. (2018) Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earth-worm. Ecotoxicology and Environmental Safety, 148:620-631. https://doi.org/10.1016/j.ecoenv.2017.11.008

GOMES S.I., MURPHY M., NIELSEN M.T., KRISTIANSEN S.M., AMORIM M.J., SCOTT-FORDSMAND J.J. (2015) Cu-nanoparticles ecotoxicity–Explored and explained? Chemosphere,139:240-245. https://doi.org/10.1016/j.chemosphere.2015.06.045

GOMES S.I., NOVAIS S.C., GRAVATO C., GUILHERMINO L., SCOTT-FORDSMAND J.J., SOARES A.M., AMORIM M. J. (2012) Effect of Cu-nanoparticles versus one Cu-salt: analysis of stress biomar-kers response in Enchytraeus albidus (Oligochaeta). Nano-toxicology, 6(2):134-143. https://doi.org/10.3109/17435390.2011.562327

GOMES S. I., NOVAIS S.C., SCOTT-FORDSMAND J.J., DE COEN W., SOARES A.M., AMORIM M.J. (2012) Effect of Cu-nanoparticles versus Cu-salt in Enchytraeus albidus (Oligochaeta): Differential gene expression through microarray analysis. Comparative Biochemistry and Physio-logy Part C: Toxicology & Pharmacology,. 155(2):219-227. https://doi.org/10.1016/j.cbpc.2011.08.008

GOMES S.I., ROCA C.P., PEGORARO N., TRINDADE T., SCOTT-FORDSMAND J.J., AMORIM M.J. (2018) High-throughput tool to discriminate effects of NMs (Cu-NPs, Cu-nanowires, CuNO3, and Cu salt aged): transcript-tomics in Enchytraeus crypticus. Nanotoxicology. 12(4):325-340. https://doi.org/10.1080/17435390.2018.1446559

GOMES S.I., SCOTT-FORDSMAND J.J., AMORIM M.J. (2015) Cellular energy allocation to assess the impact of nanomaterials on soil invertebrates (Enchytraeids): the effect of Cu and Ag. International Journal of Environmental Research and Public Health. 12(6):6858-6878. https://doi.org/10.3390/ijerph120606858

GONÇALVES M.F., GOMES S.I., SCOTT FORDS MAND J.J., AMORIM M.J. (2017) Shorter lifetime of a soil invertebrate species when exposed to copper oxide nanoparticles in a full lifespan exposure test. Scientific Re-ports, 7(1):1355. https://doi.org/10.1038/s41598-017-01507-8

HECKMANN L.H., HOVGAARD M.B., SUTHERLAND D.S., AUTRUP H., BESENBACHER F., SCOTT-FORDSMAND J.J. (2011) Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology, 20:226-233. https://doi.org/10.1007/s10646-010-0574-0

ISO, (2005) Soil Quality - Effects of pollutants on Enchytraeidae (Enchytraeus sp.) Determination of effects on reproduction and survival. Guideline No. 16387. International Organization for Standardization. Geneva, Switzerland.

JOŚKO I., KUSIAK M., OLESZCZUK P. (2021) The chronic effects of CuO and ZnO nanoparticles on Eisenia fetida in relation to the bioavailability in aged soils. Chemosphere. 266:128982. https://doi.org/10.1016/j.chemosphere.2020.128982

KATSUMITI A., THORLEY A.J., AROSTEGUI I., REIP P., VALSAMI-JONES E., TETLEY T.D., CAJARAVIL-LE M.P. (2018) Cytotoxicity and cellular mechanisms of toxicity of CuO NPs in mussel cells in vitro and compara-tive sensitivity with human cells. Toxicology in Vi-tro. 48:146-158. https://doi.org/10.1016/j.tiv.2018.01.013

KELLER A.A., MCFERRAN S., LAZAREVA A., SUH S. (2013) Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research. 15:1-17. https://doi.org/10.1007/s11051-013-1692-4

KHANGAROT R.K., KHANDELWAL M., SINGH R. (2022) Copper-based polymer nanocomposites: Application as sensors. Metal nanocomposites for energy and environmental applications. 489-508. https://doi.org/10.1007/978-981-16-8599-6_21

KHODABANDEH M., KOOHI M.K., ROSHANI A., SHAHROZIYAN E., BADRI B., POURFALLAH A., SADEGHI-HASHJIN, G. (2011, July) Acute toxicity of virgin and used engine oil enriched with copper nano-particles in the earthworm. In Journal of Physics: Conference Series 304, No. 1, p. 012056). IOP Publishing. https://doi.org/10.1088/1742-6596/304/1/012056

LEBEDEV S.V., VERSHININA I.A. (2020, October) Studying the vital signs of Eisenia Fetida after introducing copper-containing nanoparticles into the culture medium. In IOP Conference Series: Earth and Environmental Science (Vol. 579, No. 1, p. 012054). IOP Publishing. https://doi.org/10.1088/1755-1315/579/1/012054

LIN D., XING B. (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ-mental Pollution. 150(2):243-250. https://doi.org/10.1016/j.envpol.2007.01.016

LLORENS A., LLORET E., PICOUET P.A., TRBOJEVICH R., FERNANDEZ A. (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends in Food Science & Technology. 24(1):19-29.

MA J., CHEN Q.L., O’CONNOR P., SHENG G.D. (2020) Does soil CuO nanoparticles pollution alter the gut microbiota and resistome of Enchytraeus crypticus? Environmental Pollution. 256:113463. https://doi.org/10.1016/j.envpol.2019.113463

MARIA V.L., LICHA D., RANNINGER C., SCOTT-FORDSMAND J.J., HUBER C.G., AMORIM M.J. (2018) The Enchytraeus crypticus stress metabolome–CuO NM case study. Nanotoxicology. 12(7):766-780. https://doi.org/101080/17435390.2018.1481237

MARIA V.L., LICHA D., SCOTT‐FORDSMAND J.J., HUBER C.G., AMORIM M.J. (2018) The Proteome of Enchytraeus crypticus—exposure to CuO nanomaterial and CuCl2—in pursue of a mechanistic interpretation.. Proteo-mics. 18(19):1800091. https://doi.org/10.1002/pmic.201800091

MWAANGA P., MBULWE S., SHUMBULA P., NYIRENDA J. (2017) Investigating the Toxicity of Cu, CuO and ZnO Nanoparticles on Earthworms in Urban Soils. Journal of Pollution Effects & Control. 5(03): 1000195. https://doi.org/10.4176/2375-4397.1000195

OECD, 2004. Guidelines for the testing of chemicals No. 220. Enchytraeid Reproduction Test. Organisation for Economic Cooperation and Development. Paris, France.

PACHECO N.I.N., ROUBALOVA R., DVORAK J., BENADA O., PINKAS D., KOFRONOVA O., PROCHAZKOVA P. (2021) Understanding the toxicity mechanism of CuO nanoparticles: the intracellular view of exposed earthworm cells. Environmental Science: Nano, 8(9):2464-2477. https://doi.org/10.1039/D1EN00080B

PARK B.K., KIM D., JEONG S., MOON J., KIM J.S. (2007). Direct writing of copper conductive patterns by ink-jet printing. Thin solid films. 515(19):7706-7711. https://doi.org/10.1016/j.tsf.2006.11.142

PAVANI K.V., GAYATHRAMMA K., ADURI P. (2018) Copper Oxide Nanoparticles Toxicity on Eisenia fetida Earthworms and Bacterial Species. Journal of Nanoscience and Technology, 418-420. https://doi.org/10.30799/jnst.106.18040404

REN G., HU D., CHENG E.W., VARGAS-REUS M.A., REIP P., ALLAKER R.P. (2009) Characterisation of cop-per oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6):587-590. https://doi.org/10.1016/j.ijantimicag.2008.12.004

RIBEIRO M.J., AMORIM M.J., SCOTT-FORDSMAND J.J. (2019) Cell in vitro testing with soil invertebrates-challenges and opportunities toward modelling the effect of nanomaterials: a surface-modified CuO case study. Nano-materials,9(8):1087. https://doi.org/10.3390/nano9081087

RÖMBKE J., MOSER T. (2002) Validating the enchytraeid reproduction test: organisation and results of an international ring test. Chemosphere. 46(7): 1117-1140. https://doi.org/10.1016/S0045-6535(01)00113-8

RUIZ P., KATSUMITI A., NIETO J.A., BORI J., JIMENO-ROMERO A., REIP P., CAJARAVILLE M.P. (2015) Short-term effects on antioxidant enzymes and long-term genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and ionic copper in mussels Mytilus galloprovincialis. Marine Environmental Research. 111:107-120.

SHAHID M., KHAN M. S. (2017) Assessment of glyphosate and quizalofop mediated toxicity to greengram [Vigna radiata (L.) Wilczek], stress abatement and growth promotion by herbicide tolerant Bradyrhizobium and Pseudomonas species. International Journal of Current Microbiology and Applied Sciences, 6(12):3001-3016. https://doi.org/10.20546/ijcmas.2017.612.351

SWART E., DVORAK J., HERNÁDI S., GOODALL T., KILLE P., SPURGEON D., PROCHAZKOVA P. (2020) The effects of in vivo exposure to copper oxide nanoparticles on the gut microbiome, host immunity, and susceptibility to a bacterial infection in earthworms. Nanomaterials, 10(7):1337. https://doi.org/10.3390/nano10071337

SWART E., GOODALL T., KILLE P., SPURGEON D.J., SVENDSEN C. (2020) The earthworm microbiome is resilient to exposure to biocidal metal nanoparticles. Environmental Pollution, 267:115633. https://doi.org/10.1016/j.envpol.2020.115633

TATSI K., SHAW B.J., HUTCHINSON T.H., HANDY R.D. (2018) Copper accumulation and toxicity in earthworms exposed to CuO nanomaterials: Effects of particle coating and soil ageing. Ecotoxicology and Environmental Safety. 166:462-473. https://doi.org/10.1016/j.ecoenv.2018.09.054

UNRINE J.M., TSYUSKO O.V., HUNYADI S.E., JUDY J.D., BERTSCH P.M. (2010) Effects of particle size on chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed to copper nanoparticles. Journal of Environmental Quality. 39(6):1942-1953. https://doi.org/10.2134/jeq2009.0387

VELICOGNA J.R., SCHWERTFEGER D., JESMER A., BEER C., KUO J., DEROSA M.C., PRINCZ J. (2021) Soil invertebrate toxicity and bioaccumulation of nano copper oxide and copper sulphate in soils, with and without biosolids amendment. Ecotoxicology and Environmental Safety. 217:112222. https://doi.org/10.1016/j.ecoenv.2021.112222

WANG F., BI Q.L., WANG X.B., LIU W.M. (2008) Sliding friction and wear performance of Ti6Al4V in the presence of surface-capped copper nanoclusters lubricant. Tribology International. 41(3):158-165. https://doi.org/10.1016/j.triboint.2007.07.010

WANG H., PAN Q., ZHAO J., CHEN W. (2009) Fabrication of CuO/C films with sisal-like hierarchical microstructures and its application in lithium ion batteries. Journal of alloys and compounds, 476(1-2):408-413. https://doi.org/10.1016/j.jallcom.2008.09.013

ZHU Q., ZHANG M., MA Q. (2012) Copper-based foliar fertiliser and controlled release urea improved soil chemical properties, plant growth and yield of tomato. Scientia Horticulturae. 143:109-114. https://doi.org/10.1016/j.scienta.2012.06.008

Downloads

Published

2024-08-20

How to Cite

Singh, B., Kumar, K., Kain, T., & Singh Rathore, D. (2024). In vivo and vitro studies of Cu-based nanoparticle toxicity in invertebrate worms: A review. EQA - International Journal of Environmental Quality, 63, 12–25. https://doi.org/10.6092/issn.2281-4485/19632

Issue

Section

Articles