Subaqueous soils and preliminary considerations on the occasional formation of “fairy circles” in the Comacchio saline (Province of Ferrara, Italy)
DOI:
https://doi.org/10.6092/issn.2281-4485/19883Keywords:
fairy circles, hydromorphic and subaqueous soils, methanogenic bacteria, sulphite and sulphate reducing bacteriaAbstract
The results of a survey carried out inside the salt basins of the Comacchio Saline (Province of Ferrara, Italy) are reported, occasionally affected by the formation of numerous submerged circular shapes of approximately two meters in diameter and whose crowns quickly tend to darken. A rare phenomenon that has so far only been reported in China in the Shanghai swamps, which have been called "fairy circles". The coordination of pedological and microbiological investigations on soils that are permanently submerged (Typic Sulfiwassents) or occasionally emerged (Aeric Sulfiwassents) has highlighted how the formation of the "fairy circles" of the Comacchio salt pans can be attributed to concomitant exogenous conditions (increase in temperatures and salinity of water) and endogenous (gas emissions of methane and sulfur dioxide), which is followed by intense bacterial activity and proliferation of microalgae which explain the darkening of the crowns. It was also possible to highlight a different distribution of bacteria along the profiles with dominance of methanogens in the epipedon and of sulfur reducers below it.
References
CANTWELL M. (2021) How fairy circles form in Shanghai's salt marshes. Plants & Animals. Doi: https://doi.org/10.1126/science.abh2247
CAPORASO J.G., LAUBER C.L., WALTERS W.A., BERG-LYONS D., LOZUPONE C.A., TURNBA- UGH P.J., FIERER N., KNIGHT R. (2011) Global
patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences, 108:4516-4522. https://doi.or/10.1073/pnas.1000080107
DENMAN S.E., TOMKINS N.W., MCSWEENEY
C.S. (2007) Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiology Ecology 62:313-322. https://doi.org/10.1111/j.1574-6941.2007.00394.x
DEPLANCKE B., HRISTOVA K.R., OAKLEY H.A., MCCRACKEN V.J., AMINOV R., MACKIE
R.I., GASKINS H.R. (2000) Molecular ecological analysis of the succession and diversity of sulfate- reducing bacteria in the mouse gastrointestinal tract. Applied and Environmental Microbiology, 66(5):2166-2174. https://doi.org/10.1128/AEM.66.5.2166-2174.2000
DOLLHOFER V., CALLAGHAN T.M., DORN-IN S., BAUER J., LEBUHN M. (2016) Development of three specific PCR-based tools to determine quantity, cellulo- lytic transcriptional activity and phylogeny of anaerobic fungi. Journal of Microbiological Methods 127:28-40. https://doi.org/10.1016/j.mimet.2016.05.017
FERRONATO C., FALSONE G., NATALE M., ZANNONI D., BUSCAROLI A., VIANELLO G., VITTORI ANTISARI L. (2016) Chemical and pedological features of subaqueous and hydromorphic soils along a hydrosequence within a coastal system (San Vitale Park Northern Italy). Geoderma, 265:141-151. https://doi.org/10.1016/j.geoderma.2015.11.018
FOTI M., SOROKIN D.Y., LOMANS B., MUSSMAN M., ZACHAROVA E.E., PIMENOV N.V., KUENEN J.G., MUYZER G. (2007) Diversity, activity, and abun- dance of sulfate-reducing bacteria in saline and hypersali- ne soda lakes. Applied and Environmental Microbiology 73(7):2093-2100. https://doi.org/10.1128/AEM.02622-06
LIU Y., WHITMAN W.B. (2008) Metabolic,phylogenetic, and ecological diversity of the methanogenic archaea. Annals of the New York Academy of Sciences, 1125(1):171-189. https//doi.org/ 10.1196/annals.1419.019
MUYZER G., DE WAAL E.C., UITTERLINDEN A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerrase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59:695-700 Doi:10.1128/aem.59.3.695-700. 1993
NAYLOR D., MCCLURE R., JANSSON J. (2022) Trends in microbial community composition and function by soil depth. Microorganisms, 10(3):540. https://doi.org/0.3390/microorganisms10030540
NÜBEL U., ENGELEN B., FELSKE A., SNAIDR J., WIESHUBER A., AMANN R.I., LUDWIG W., BACKHAUS H. (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. Journal of Bacteriology, 178(19):5636-5643. https://doi.org/10.1128/jb.178.19.5636-5643.1996
PASTORELLI R., PALETTO A., AGNELLI A.E., LAGOMARSINO A., DE MEO I. (2020) Microbial communities associated with decomposing deadwood of downy birch in a natural forest in Khibiny Mountains (Kola Peninsula, Russian Federation). Forest Ecology and Management, 455:117643. https://doi.org/10.1016/j.foreco.2019.117643
PASTORELLI R., PALETTO A., AGNELLI A.E., LAGOMARSINO A., DE MEO I. (2021) Microbial diversity and ecosystem functioning in deadwood of black pine of a temperate forest. Forests, 12(10):1418. https://doi.org/10.3390/f12101418
PELLEGRINI E., CONTIN M., VITTORI ANTISARI L., VIANELLO G., FERRONATO C., DE NOBILI
M. (2018) A new paper sensor method for field analysis of acid volatile sulfides in soils. Environ Toxicol Chem, 37:3025-3031. https://doi.org/10.1002/etc.4279
RASKIN L., STROMLEY J.M., RITTMANN B.E., STAHL D.A. (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Applied and Environmental Microbiology, 60:1232-1240. https;//doi.org/10.1128/aem.60.4.1232-1240.1994
ROGAN B., LEMKE M., LEVANDOWSKY M., GORREL T. (2005) Exploring the sulfur nutrient cycle using the Winogradsky column The American Biology Teacher, 67(6):348-356. https://doi.org/10.1662/0002-7685(2005)067
SCHOENEBERGER P.J., WYSOCKI D.A., BENHAM E.C., AND SOIL SUERVEY STAFF (2012) Field book for describing and sampling soils. Version 3.0. National Resources Conservation Service, National Soil Survey Center, Lincoln, NE. ISBN 978-0-16- 091542-0
SSS - SOIL SURVEY STAFF (2022) Keys to Soil Taxonomy, 13th edition. USDA Natural Resources Conservation Service.
STAMS A.J.M., PLUGGE C.M., DE BOK F.A., VAN HOUTEN B.H.G.W., LENS P., DIJKMAN H., WEIJMA J. (2005) Metabolic interactions in methanogenic and sulfate-reducing bioreactors. Water Science and Technology, 52(1-2):13-20. https://doi.org/10.2166/wst.2005.0493
TAKAI K.E.N., HORIKOSHI K. (2000) Rapid detection and quantification of members of the archaeal com- munity by quantitative PCR using fluorogenic probes. Applied and Environmental Microbiology, 66:5066- 5072. Doi:10.1128/AEM.66.11.5066-5072.2000
TAO P., TAN K., KE T., LIU S., ZHANG W., YANG J., ZHU X. (2022) Recognition of ecological vegetation fairy circles in intertidal salt marshes from UAV LiDAR point clouds. International Journal of Applied Earth Observation and Geoinformation, 114:103029. https://doi.org/10.1016/j.jag.2022.103029
WATANABE T., ASAKAWA S., NAKAMURA A., NAGAOKA K., KIMURA M. (2004) DGGE method for analyzing 16S rDNA of methanogenic archaeal com- munity in paddy field soil. FEMS Microbiology Letters, 232(2):153-163. https://doi.org/10.1016/S0378-1097(04)00045-X
ZHAO L.X., ZHANG K., SITEUR K., LI X.-S., LIU Q.-X., VAN DE KOPPEL J.(2021) Fairy circles reveal the resilience of self-organized salt marshes. Science Advances, 7(6):1-12. https://doi.org/10.1126/sciadv.abe1100
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Stefano Cremonini, William Trenti, Roberta Pastorelli, Arturo Fabiani, Gilmo Vianello, Livia Vittori Antisari
This work is licensed under a Creative Commons Attribution 4.0 International License.