Algae, a biological purification tool for biogas upgrade: a review

Authors

  • Ugochi Nneka Kemka Africa Centre of Excellence in Future Energies and Electrochemical System (ACE-FUELS) Federal University of Technology, Owerri
  • Toochukwu Ekwutosi Ogbulie Africa Centre of Excellence in Future Energies and Electrochemical System (ACE-FUELS) Federal University of Technology, Owerri
  • Kanayo Oguzie Africa Centre of Excellence in Future Energies and Electrochemical System (ACE-FUELS) Federal University of Technology, Owerri
  • Christogonus Oudney Akalezi Africa Centre of Excellence in Future Energies and Electrochemical System (ACE-FUELS) Federal University of Technology, Owerri
  • Emeka Emmanuel Oguzie Africa Centre of Excellence in Future Energies and Electrochemical System (ACE-FUELS) Federal University of Technology, Owerri
  • William Asamoah Regional Centre for Energy and Environmental Sustainability (RCEES), UENR, Sunyani
  • Oluchi Rose Colette Nlemolisa Department of Microbiology, Federal University of Technology Owerri

DOI:

https://doi.org/10.6092/issn.2281-4485/19915

Keywords:

Algae, Carbon dioxide, Biogas, Biological purification

Abstract

One primary application of algae is in the production of biodiesel; however, they can also be employed as a means of removing carbon dioxide from biogas. Algae have recently attracted a lot of attention due to these advantages. Reducing carbon dioxide and possibly hydrogen sulfide concentrations improve biogas quality significantly. Because biogas is created as a mixture of methane gas and a significant amount of carbon dioxide, it needs to be cleaned (scrubbed) to create usable, ultra-pure biomethane. Algae offer a more environmentally friendly way to extract carbon dioxide from biogas and utilize it for photosynthesis whilst yielding itself for production of biodiesel. Algal culture systems for upgrading biogas present a viable substitute to traditional physical and/or chemical upgrading methods, as they are safer, more affordable, and less harmful to the environment hence contributing to a more sustainable circular economy. To completely explore the enormous potential of growing algae to capture carbon dioxide, more study is necessary. This review's objective is to present fact-based knowledge regarding algae's capacity to absorb carbon dioxide from biogas.

References

ABINANDAN S., SUBASHCHANDRABOSE S.R., VENKATESWARLU K., MEGHARAJ M. (2019) Soil microalgae and cyanobacteria: the biotechnological poten-tial in the maintenance of soil fertility and health. Critical Reviews in Biotechnology, 39(8):981-998. https://doi. org/ 10.1080/0738851.2019.1654972

ALAMI A.H., ALASAD S., ALI M., ALSHAMSI M. (2021) Investigating algae for CO2 capture and accumula-tion and simultaneous production of biomass for biodiesel production. Science of the Total Environment, 759: 143529. https://doi.org/10.1016/j.scitotenv.2020.143529

ANDERSEN R. A., LEWIN R. A. (2023) Algae. Encyclopedia Britannica. https://www.britannica.com/ science/algae

ANGELIDAKI I., TREU L., TSAPEKOS P., LUO G., CAMPANARO S., WENZEL H., KOUGIAS P.G. (2018) Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 36(2):452-466. https://doi.org/10.1016/j.biotechadv.2018.01.011

ANJOS M., FERNANDES B.D., VICENTE A.A., TEIXEIRA J.A., DRAGONE G. (2013) Optimization of CO2 Bio-Mitigation by Chlorella vulgaris. Bioresource Technology, 139:149–154. https://doi.org/10.1016/j.bio rtech.2013.04.032

ASLAM A., THOMAS-HALL S.R., MUGHAL T.A., SCHENK P.M. (2017) Selection and adaptation of micro-algae to growth in 100% unfiltered coal-fired flue gas. Bioresource Technology, 233: 217-283. https://doi.org/ 10. 016/j.biortech.2017.02.111

ATELGE M.R., SENOL H., DJAAFRI M., HANSU T.A., KRISA D., ATABANI A., ESKICIOGLU C., MURATÇOBANO ˘GLU H., UNALAN S., KALLOUM S., AZBAR N., KIVRAK H.D. (2021) A Critical Overview of the State-of-the-Art Methods for Biogas Purification and Utilization Processes. Sustainability, 13: 11515. https://doi.org/10.3390/su132011515

AWE O.W., ZHAO Y., NZIHOU A., MINH D.P., LYCZKO N. (2017) A Review of Biogas Utilization, Purification and Upgrading Technologies Review. Waste Biomass Valorization, 8:267–283. https://doi.org/:10. 1007/s12649-016-9826-4

BAHRUN M.H.V., BONO A., OTHMAN N., ZAINI M.A.A. (2022) Carbon dioxide removal from biogas through pressure swing adsorption – A review. Chemical Engineering Research and Design, 183:285-306. https://doi.org/10.1016/j.cherd.2022.05.012

BARKIA I., SAARI N., MANNING S.R. (2019) Micro-algae for high-value products towards human health and nutrition. Marine Drugs, 17(5):304. Doi:10.3390/md17 050304

BUCK-WIESE H., ANDSKOG M.A., NGUYEN P.N., BLIGH M., ASMALA E., VIDAL-MELGOSA S., LIEBEKE M., GUSTAFSSON C., HEHEMANN J. (2022) Fucoid brown algae inject fucoidan carbon into the ocean. Proceedings of the National Academy of Science 120 (1) e2210561119. https://doi.org/10.1073/pnas.2210561119

CHANDEL P., MAHAJAN D., THAKUR K., KUMAR R., KUMAR S., BRAR B., SHARMA D., SHARMA, A.K.

(2023) A review on plankton as a bioindicator: a promising tool for monitoring water quality. World Water Policy, 10(1):213-232. https://doi.org/10.1002/wwp2.12137

CHAUDHARY R., DIKSHIT A.K., TONG Y.W. (2018) Carbon-dioxide bio fixation and phycoremediation of mu- nicipal wastewater using Chlorella vulgaris and Scenedesmus obliquus. Environmental Science and Pollution Research, 25: 20399-20406. https://doi.org/10.1007/s11356-017-9575-3

CHEAH W.Y., SHOW P.L., CHANG J.S., LING T.C., JUAN J. C. (2015) Bio sequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technology, 184:190-201. https://doi.org/10.1016/j.bior tech.2014.11.026

CHEIRSILP B., WANTIP K., CHAI-ISSARAPAP N., MANEECHOTE W., PEKKOH J., DUANGJAN K., PUMAS C., PATHOM-AREE W., SRINUANPAN S. (2022) Enhanced production of astaxanthin and co-biopro- ducts from microalga Haematococcus sp. integrated with valo- rization of industrial wastewater under two-stage LED light illumination strategy. Environmental Technology and Inno- vation, 28:102620. https://doi.org/10.1016/j.eti.2022.1026

CHEIRSILP B., MANEECHOTE W., SRINUANPAN S., ANGELIDAKI L. (2023) Micro-algae as tools for bio- circular-green economy: Zero-waste approaches for su- stainnable production and biorefineries of microalgal bio- mass.Bioresource Technology, 387:129620. https://doi. org/10.1016/j.biortech.2023.129620

CHEN C.Y., KUO E.W., NAGARAJAN D., HO S.H., DONG C.D., LEE D.J., CHANG J.S. (2020) Cultivating

Chlorella sorokiniana AK-1 with swine wastewater for simul- taneous wastewater treatment and algal biomass produc- tion. Bioresource Technology, 302:122814. https://doi. org/10.1016/j.biortech.2020.122814

DAS J., RAVISHANKAR H., LENS N.L.P. (2022) Biological biogas purification: Recent developments, challenges and future prospects. Journal of Environmen-tal Management 304: 114198. https://doi.org/10.1016/j. jenvman.2021.114198

DASAN Y.K., LAM M.K., YUSUP S., LIM J.W., SHOW P.L., TAN I.S., LEE K.T. (2020) Cultivation of Chlorella Vulgaris Using Sequential-Flow Bubble Column Photobio reactor: A Stress-Inducing Strategy for Lipid Accumulation and Carbon Dioxide Fixation. Journal of CO2 Utilization 41: 101226. https://doi.org/10.1016/j.jcou.2020.101226

DING G.T., MOHD YASIN N.H., TAKRIFF M.S., KAMARUDIN K.F., SALIHON J., YAAKOB Z., MOHD HAKIMI N.I.N. (2020) Phytoremediation of Palm Oil Mill Effluent (POME) and CO2 Fixation by Locally Isolated Micro-algae: Chlorella Sorokiniana UKM2, Coelastrella sp. UKM4 and Chlorella Pyrenoidosa UKM7. Journal of Water Process Engineering 35: 101202. https://doi.org/10.1016/j.jwpe.2020.101202.

DUARTE J.H., COSTA J.A.V. (2017) Synechococcus nidulans from a thermo-electric coal power plant as a potential CO2 mitigation in culture medium containing flue gas wastes. Bioresource Technology 241: 21-24. https://doi.org/ 10.1016/j.biotech.2017.05.064

EL-ABD N.M., HAMOUDA R.A., DAWOUD G.T.M. (2018) Impacts of chlorella vulgaris supplementation to chicken drinking water on amino acids, fatty acids, minerals content of broiler chicken meats. Egyptian Journal of Nu- trition and Feeds, 21(2): 509-518. https://doi.org/10.2160 08/EJNF.2018.75608

FERNÁNDEZ I., ACIÉN F.G., FERNÁNDEZ J.M., GUZMÁN J.L., MAGÁN J.J., BERENGUEL M. (2012)

Dynamic model of microalgal production in tubular photo- bioreactors. Bioresource Technology, 126: 172-181. https://doi.org/10.1016/j.biortech.2012.08.087

FERREIRA A., BASTOS C.R., MARQUES-DOS SAN- TOS C., ACIÉN-FERNANDEZ F.G., GOUVEIA L. (2023) Algaeculture for agriculture: from past to future. Frontiers in Agronomy, 5:1064041.https://doi.org/10. 3389/fargo.2023.1064041

FU J., LI P., LIN Y., DU H., LIU H., ZHU W., REN H. (2022) Fight for carbon neutrality with state of the art negative carbon emission technologies. Eco-Environment and Health, 1(4): 259-279. Doi: 10.1016/j.eehl.2022.11.005

GANI P., HUA A.K., SUNAR N.M., MATIAS- PERALTA H.M., APANDI N. (2021) The influence of photoperiod, light intensity, temperature and salinity on the growth rate and biomass productivity of Botryococcus sp. In IOP Conference Series: Earth and Environmental Science 646(1): 012006. IOP Publishing. https://doi.org/ 10.1088/1755-1315/646/1/012006

GOLMAKANI A., NABAVI S.A., WADI B., MANOVIC V. (2022) Advances, challenges, and perspec-tives of biogas cleaning, upgrading, and utilization. Fuel 317:123085. https://doi.org/10.1016/j.fuel.2021.123085

HARIZ H.B., TAKRIFF M.S., YASIN N.H.M., BA- ABBAD M.M., HAKIMI N.I.N.M. (2019) Potential of the

microalgae-based integrated wastewater treatment and CO2 fixation system to treat Palm Oil Mill Effluent (POME) by indigenous microalgae; Scenedesmus sp. and Chlorella sp. Journal of Water Process Engineering, 32: 100907. https://doi.org/10.1016/j.jwpe.2019.100907

HARRIS N., MANAN H., JUSOH M., KHATOON H., KATAYAMA T., KASON N.A. (2022) Effect of different salinity on the growth performance and proximate compo- sition of isolated indigenous micro-algae species. Aquacul- ture Reports 22: 100925. https://doi.org/10.1016/j.aqrep.

100925

HERNANDEZ-MIRELES,I., VAN DER STEL R., GOETHEER E. (2014) New methodologies for integra- ting algae with CO2 capture. Energy Procedia, 63:7954- 7958. https://doi.org/10.1016/j.egypro.2014.11.830

HOSSEINI N.S., SHANG H., SCOTT J.A. (2018) Biosequestration of Industrial Off-Gas CO2 for Enhanced Lipid Productivity in Open Micro-algae Cultivation Systems. Renewable Sustainable Energy Review 92:458– 469. https://doi.org/10.1016/j.rser.2018.04.086

HOYOS E.G., KURI R., TODA T., MU˜NOZ, R. (2024) Innovative design and operational strategies to improve CO2 mass transfer during photosynthetic biogas upgrading. Bioresource Technology 391:129955. https://doi.org/ 10.1016/j.biortech.2023.129955

IGHALO J.O., DULTA K., KURNIAWAN S.B., OMO- ARUKHE F. O., EWUZIE U., ESHIEMOGIE S.O., OJO A.U., ABDULLAH S.R.S. (2022) Progress in microal- gae application for CO2 sequestration. Cleaner Chemical Engineering, 3:100044. https://doi.org/10.1016/j.clce.2022.100044

JAISWAR S., CHAUHAN P. S. (2017) Applied aspect of microalgae in monitoring of heavy metals. Mining of mi- crobial wealth and Metagenomics, 431-442. https://doi. org/10.1007/978-981-10-5708-3_23

JALILIAN N., NAJAFPOUR G.D., KHAJOUEI M. (2020) Macro and micro algae in pollution control and biofuel production – a review. ChemBioEng Reviews, 7(1): 18-33. https://doi.org/10.1002/cben.20100014

KAO C.Y., CHIU S.Y., HUANG T.T., DAI L., HSU L.K., LIN C.S. (2012) Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgra- ding. Applied Energy, 93:176-183. https://doi.org/10.1016/j.apenergy.2011.12.082

KASSIM M. A., MENG T.K. (2017). Carbon dioxide (CO2) bio-fixation by micro-algae and its potential for biorefinery and biofuel production. Science of the Total Environment, 584-585: 1121-1129. https://doi.org/10. 1016/j.scitotenv.2017.01.172

KIM T.H., LEE Y., HAN S.H., HWANG S.J. (2013) The effects of wavelength and wavelength mixing ratios on micro-algae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresource Technology 130:75–80. https://doi.org/10.1016/j.biorte ch.2012.11.134

KNAPIK E., KOSOWSKI P., STOPA J. (2018) Cryogenic liquefaction and separation of CO2 using nitrogen removal unit cold energy. Chemical Engineering Research and Design, 131:66-79. https://doi.org/10.1016/j.cherd.2017.12.027

KRZEMIŃSKA I., PAWLIK-SKOWROŃSKA B., TRZCIŃSKA M., TYS J. (2014) Influence of photoperiods on the growth rate and biomass productivity of green micro-algae. Bioprocess and Biosystems Engineering, 37(4):735–741. https://doi: 10.1007/s00449-013-1044-x.

KUMAR V., NANDA M., KUMAR S., CHAUHAN P.K. (2018) The Effects of Ultraviolet Radiation on Growth, Biomass, Lipid Accumulation and Biodiesel Properties of Micro-algae. Energy Sources Part A Recovery. Utilization, and Environmental Effects, 40(7): 787–793. https://doi. org/10.1080/15567036.2018.1463310

KUMARI A., KUMAR A., PATHAK A.K., GURIA C. (2014) Carbon dioxide assisted Spirulina platensis cultivation using NPK -10:26:26 complex fertilizer in sintered disk chromatographic glass bubble column. Journal of Carbon dioxide Utilization, 8: 49-59. https://doi.org/10.1016/ j.jcou.2014.07.001

LEI L., BAI L., LINDBRÅTHEN A., PAN F., ZHANG X., HE X. (2020) Carbon membranes for CO2 removal: Status and perspectives from materials to processes. 401: 126084. https://doi.org/10.1016/j.cej.2020.126084

LI G., XIAO W., YANG T., LYU T. (2023) Optimization and Process Effect for Micro-algae Carbon Dioxide Fixa- tion Technology Applications Based on Carbon Capture: A Comprehensive Review 9:35. https://doi.org/10.3390/c 9010035

LI S., LI X., HO S.H. (2022) How to enhance carbon cap- ture by evolution of microalgal photosynthesis? Separation and Purification Technology, 291: 120951. https://doi. org/b10.1016/j.seppur.2022.120951

LI G., ZHANG J., LI H., HU R., YAO X., LIU Y., ZHOU Y., LYU T. (2021) Towards high-quality biodiesel production from microalgae using original and anaerobical- ly-digested livestock wastewater. Chemosphere, 273:12857 8. https://doi.org/10.1016/j.chemosphere.2020.128578

LI Q., FU L., WANG Y., ZHOU D., RITTMANN B.E. (2018) Excessive phosphorus caused inhibition and cell damage during heterotrophic growth of Chlorella regularis. Bioresource Technology 268:266–270. https://doi.org/10. 1016/j.biortech.2018.07.148

LI S., SONG C., LI M., CHEN Y., LEI Z., ZHANG Z. (2020) Effect of different nitrogen ratio on the Per- formance of CO2 absorption and micro-algae conversion (CAMC) Hybrid System. Bioresource Technology 306: 123126. https://doi.org/10.1016/j.biortech.2020.123126

LI Y., ALAIMO C.P., KIM M., KADO N.Y., PEPPERS J., XUE J., WAN C., GREEN P. G., ZHANG R., JENKINS B.M., VOGEL C.F.A., WUERTZ S., YOUNG T.M., KLEEMAN M.J. (2019) Composition and toxicity of biogas produced from different feedstocks in California. Environmental Science and Technology, 53(19):11569– 11579. https://doi.org/10.1021/macs.est.9b03 9b03003

LIANG Y., TANG J., LUO Y., KACZMAREK M.B., LI X., DAROCH M. (2019) Thermosynechococcus as a Thermophilic Photosynthetic Microbial Cell Factory for CO2 Utilization. Bioresource Technology 278: 255–265. https://doi.org/10.1016/j.biortech.2019.01.089

LYCZKO N., NZIHOU A., AWE O.W., ZHAO Y., MINH D.P. (2017) A Review of Biogas Utilization, Purification and Upgrading Technologies. Waste Biomass Valorization 8:267–83. https://doi.org/10.1007/s12649-

-9826-4.

MANN G., SCHLEGEL M., SCHUMANN R.,SAKALAUSKAS A. (2009) Biogas-conditioning with micro-algae. Agronomy Research, 7(1):33-38. Corpus ID:55836016

MEERANAYAK U.F.J., NADAF R.D., TORAGALL M. M., NADAF U., SHIVASHARANA C.T. (2020) The role

of algae in sustainable environment: a review. Journal of Algal Biomass Utilization, 11(2): 28-34.

MOREIRA D., PIRES J.C. (2016) Atmospheric CO2 cap- ture by algae: negative carbon dioxide emission path. Bioresource Technology, 215: 371-379. https://doi.org/ 10.1016/j.biortech.2016.03.060

MOREIRA J. B., SANTOS T. D., DUARTE J. H., BEZERRA P. Q. M., DE MORAIS M. G., COSTA J. A. V. (2023) Role of micro-algae in circular bioeconomy: from waste treatment to biofuel production. Clean Technologies and Environmental Policy, 25(2):427-437. https://doi.org/ 10.1007/s10098-021-02149-1.

MUÑOZ R., MEIER L., DIAZ I., JEISON D. (2015) A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Review Environmental Science Bio Technology, 14:727–759. https://doi.org/10.1007/s11157-015-9379-1

MUSA M., AYOKO G.A., WARD A., RÖSCH C., BROWN R.J., RAINEY T.J. (2019) Factors affecting mi- croalgae production for biofuels and the potentials of che- mometric methods in assessing and optimizing producti- vity. Cells, 8(8): 851. https://doi.org/10.3390/cells8080851

NITHIYA E.M., TAMILMANI J., VASUMATHI K.K., PREMALATHA M. (2017) Improved CO2 fixation with Oscillatoria sp. in response to various supply frequencies of CO2 supply. Journal of Carbon dioxide Utilization 18:198- 205. https://doi.org/10.1016/j.jcou.2017.01.025

ONYEAKA H., MIRI T., OBILEKE K., HART A., ANUMUDU C., AL-SHARIFY Z.T. (2021) Minimizing carbon footprint via micro-algae as a biological capture.Carbon Capture Science and Technology, 1: 100007. https://doi.org/10.1016/j.ccst.2021.100007

ORUGANTI R.K., KUMARA M.K., TEJAVATH R., SRIARIYANUN M., BHATTACHARYYA D. (2023) Spirulina Cultivation Using Biogas CO2 as the Carbon Source: Preliminary Study on Biomass Growth and Productivity. E3S Web of Conferences, 428:01005. https://doi.org/10.1051/e3sconf/20234280100

PAPURELLO D., SILVESTRI S., LANZINI A. (2019) Biogas cleaning: Trace compounds removal with model validation. Separation and Purification Technology, 210: 80-92. https://doi.org/10.1016/j.seppur.2018.07.081

PASICHNYK M., STANOVSKY P., POLEZHAEV P., ZACH B., ŠYC M., BOBÁK M., JANSEN J.C.,PŘIBY M., BARA J.E., FRIESS K., HAVLICA J., GIN D.L., NOBLE R.D., IZÁK P. (2023) Membrane technology for chal- lenging separations: Removal of CO2, SO2 and NOx from flue and waste gases. Separation and Purification Techno- logy, 323:124436. https://doi.org/10.1016/j.seppur.2023.124436

PAUL S., BERA S., DASGUPTA R., MONDAL S., ROY S. (2021) Review on the recent structural advances in open and closed systems for carbon capture through algae. Ener- gy Nexus, 4:100032. https://doi.org/10.1016/j.nexus. 2021.10032

POSADAS OLMOS E. (2016) Innovative algal-bacterial processes for wastewater treatment: a further step towards full scale implementation. Doi:10.35376/10324/18777

POURJAMSHIDIAN R., ABOLGHASEMI H., ESMAILI M., AMREI H.D., PARSA M., REZAEI S. (2019) Carbon

dioxide bio fixation by Chlorella sp. In a bubble column re- actor at different flow rates and CO2 concentrations. Brazi- lian Journal of Chemical Engineering, 36(2): 639-645. https://doi.org/10.1590/0104-6632.20190362s20180151

PREMARATNE M., LIYANAARACHCHI V.C., NISHSHANKA G.K.S.H., NIMARSHANA P.H.V., ARIYADASA T.U. (2021) Nitrogen-Limited Cultivation of Locally Isolated Desmodesmus sp. for Sequestration of CO2 from Simulated Cement Flue Gas and Generation of Feedstock for Biofuel Production. Journal of Environmental Chemical Engineering, 9:105765. https://doi.org/10.1016/j.jece.2021.105765

QU W., SHOW P.L., HASUNUMA T., HO S.H. (2020) Optimizing real swine wastewater treatment efficiency and carbohydrate productivity of newly microalga Chlamydomo- nas sp. QWY37 used for cell-displayed bioethanol produc- tion. Bioresource Technology, 305: 123072. https://doi. org/10.1016/j.biortech.2020.123072

RAI M.P., GUPTA S. (2017) Effect of media composition and light supply on biomass, lipid content and FAME profile for quality biofuel production from Scenedemus abundans. Energy Conversion Management, 141:85-92. https://doi.org/10.1016/j.enconman.2016.05.018

RAMARAJ R., DUSSADEE N. (2015) Biological Purification Processes for Biogas Using Algae Cultures: A Review. International Journal of Sustainable and Green Energy. Special Issue: Renewable Energy Applications in the Agricultural Field and Natural Resource Technology 4(1):20-32. https://doi.org/10.11648/j.ijrse.s.201 5040101.14

RAZZAK S.A., ALI S.A.M., HOSSAIN M.M., DELASA H. (2017) Biological CO2 Fixation with Production of Micro-algae in Wastewater—A Review. Renewable Sustai- nable Energy Review, 76:379–390. https://doi.org/10.10 16/j.rser.2017.02.038

RAZZAK S.A., ILYAS M., ALI S.A.M., HOSSAIN M.M. (2015) Effects of CO2 Concentration and pH on Mixo- trophic Growth of Nannochloropsis oculata. Applied Bioche- mistry Biotechnology, 176:1290–1302. https://doi.org/10. 1007/s12010-015-1646-7

SAADAOUI I., RASHEED R., AGUILAR A., CHERIF M., AL JABRI H., SAYADI S., MANNING S.R. (2021)

Microalgal-based feed: promising alternative feedstocks for livestock and poultry production. Journal of Animal Scien- ce and Biotechnology, 12(1):76. https://doi.org/10.1186/ s40104-021-00593-z

SACHDEVA N., GUPTA R.P., MATHUR A.S., TULI D.K. (2016) Enhanced Lipid Production in Thermo- Tolerant Mutants of Chlorella Pyrenoidosa NCIM 2738. Bioresource Technology, 221:576–587. https://doi.org/10. 1016/j.biortech.2016.09.049

SADVAKASOVA A.K., KOSSALBAYEV B.D., BAUENOVA M.O., BALOUCH H., LEONG Y.K., ZAYADAN B.K., HUANG Z., ALHARBY H.F., TOMO T., CHANG J., ALLAKHVERDIEV S.I. (2023) Micro-algae as a key tool in achieving carbon neutrality for bioproduct production. Algal Research 72:103096. https://doi.org/10.1016/j.algal.2023.103096

SAIFUDDIN N., AISSWARYA K., JUAN Y. P., PRIATHARSINI P. (2015) Sequestration of high carbon dioxide concentration for induction of lipids in microalgae for biodiesel production. Journal of Applied Sciences, 15(8): 1045. https://doi.org/10.3923/jas.2015.1045.1058

SFORZA E., GRIS B., DE FARIAS SILVA C. E., MOROSINOTTO T., BERTUCCO A. (2014) Effects of light on cultivation of Scenedesmus obliquus in batch and continuous flat plate photobioreactor. Chemical Enginee- ring Transactions 38:211–216. https://doi.org/10.3303/ CET1438036

SINGH J., DHAR D.W. (2019) Overview of Carbon Capture Technology: Microalgal Biorefinery Concept and State-of-the-Art. Frontiers in Marine Science 6:29 https://doi.org/10.3389/fmars.2019.0002S9

SINGH H.M., TYAGI V.V., KOTHARI R., AZAM R., SLATHIA P.S., SINGH B. (2020) Bioprocessing of cultivated Chlorella pyrenoidosa on poultry excreta leachate to enhance algal biomolecule profile for resource recove- ry. Bioresource Technology, 316: 123850. https://doi. org/10.1016/j.biortech.2020.123850

SIQUEIRA R.M., FREITAS G.R., HUGO R., PEIXOTO, DO NASCIMENTO J.F., MUSSE A.P.S., ANTONIO TORRES E.B., AZEVEDO D.C.S., BASTOS-NETO M. (2017). Carbon-dioxide capture by pressure swing adsorption. Energy Procedia 114:2182– 2192. https://doi. org/10.1016/j.egypro.2017.03.1355

SONG C., LIU Q., DENG S., LI H., KITAMURA Y.(2019) Cryogenic-based CO2 capture technologies: State- of-the-art developments and current challenges. Renewable and Sustanable Energy Reviews, 101:265-278. https://doi. org/10.1016/j.rser.2018.11.018

SREELAKSHMI K.P., SARMA S., CHOUDHURY S.,NIRMAL L. A., JACOB S. (2021) Enrichment of biogas by microalgal scrubbing system and value-added products synthesis. In Journal of Physics: Conference Series 1: 012062. IOP Publishing. https://doi.org/10.1088/1742- 6596/2007/1/012062

STARR K., GABARRELL X., VILLALBA G., TALENS L., LOMBARDI L. (2012) Life cycle assessment of biogas upgrading technologies. Waste Management, 32: 991-999. https://doi.org/10.1016/j.wasman.2011.12.016

SUMARDIONO S., BUDIYONO I.S., SASONGKO S.B. (2014) Utilization of biogas as carbon dioxide provider for Spirulina platensis culture. Current Research Journal of Biological Sciences, 6 (1):53-59. ISSN: 2041- 076X

THOMAS D.M., MECHERY J., PAULOSE S.V. (2016) Carbon dioxide capture strategies from flue gas using mi- croalgae: a review. Environmental Science and Pollution Research, 23:16926-16940. https://doi.org/10.1007/ s11356-016-7158-3

TIBBETTS S.M., MILLEY J.E., LALL S.P. (2015) Chemical composition and nutritional properties of fresh- water and marine microalgal biomass cultured in photo bioreactors. Journal of Applied Phycology, 27: 1109-1119. https://doi.org/10.1007/s10811-014-0428-x

VELASCO A., FRANCO-MORGADO M., SALDIVAR A., CUETERO-MARTÍNEZ Y., BUITRÓN G., DE LOS COBOS-VASCONCELOS D., MONROY Ó., GONZÁLEZ-SÁNCHEZ A. (2023) Organic leachate and biogas utilization in outdoor microalgae cultivation under alkaline conditions at pilot-scale. Waste and Biomass Valorization, 1-13. https://doi.org/10.1007/ s12649-023-02223-3

VERMA R., KUMARI K.K., SRIVASTAVA A., KUMAR A. (2020) Photoautotrophic, mixotrophic, and heterotrophic culture media optimization for enhanced microalgae production. Journal of Environmental Chemi- cal Engineering, 8(5): 104149. https://doi.org/10.1016/ j.jece.2020.104149

VIEGAS C., GOUVEIA L., GONÇALVES M. (2021) Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy. Journal of Environmental Management, 286: 112187. https://doi.org/10.1016/j.jenvman.2021.112187

WAHIDIN S., IDRIS A., SHALEH S. R. M. (2013) The influence of light intensity and photoperiod on the growth and lipid content of micro-algae Nannochloropsis sp. Bioresource Technology, 129:7–11. https://doi.org/10. 1016/j.biortech.2012.11.032

WILBERFORCE T., BAROUTAJI A., SOUDAN B., AL-ALAMI A.H., OLABI A.G. (2019) Outlook of carbon capture technology and challenges. Science of the Total Environment, 657:56-72. https://doi.org/10.1016/ j.scitotenv.2018.11.424

XIA A., HERRMANN C., MURPHY J.D. (2015) How do we optimize third-generation algal bio-fuels? Biofuels Bioproduction and Biorefining, 9(4):358–367. https:// doi.org/10.1002/bbb.1550

YAHYA L., HARUN R., ABDULLAH L.C. (2020) Screening of Native Micro-algae Species for Carbon Fixation at the Vicinity of Malaysian Coal-Fired Power Plant. Scientific Reports 10(1): 22355. https://doi.org/ 10.1038/s41598-020-79316-9

ZABED H.M., AKTER S., YUN J., ZHANG G., ZHANG Y., QI X. (2020) Biogas from microalgae: Technologies, challenges and opportunities. Renewable and Sustainable Energy Reviews, 117: 109503. https:// doi.org/10.1016/j.rser.2019.109503

ZAYADAN B.K., SADVAKASOVA A.K., MATORIN, D.N., AKMUKHANOVA N.R., KOKOCINSKI M., TIMOFEEV N.P., BALOUCH K., BAUENOVA M.O.(2020) Effect of cadmium ions on some biophysical para- meters and ultrastructure of Ankistrodesmus sp. В-11 Cells. Russian Journal of Plant Physiology, 67: 845-854. DOI:10.1134/S1021443720040196

ZHAO B., SU Y. (2014) Process Effect of Microalgal- Carbon Dioxide Fixation and Biomass Production: A Review. Renewable Sustainable Energy Review 31:121– 132. https://doi.org/10.1016/j.rser.2013.11.054

ZHOU W., WANG J., CHEN P., JI C., KANG Q., LU B., LI K., LIU J., RUAN R. (2017) Bio-mitigation of carbon dioxide using microalgal systems: advances and perspectives. Renewable and Sustainable Energy Reviews, 76:1163-1175. https://doi.org/10.1016/j.rser.2017.03.065

ZIOBROWSKI Z., KRUPICZKA R., ROTKEGEL A. (2016) Carbon dioxide absorption in a packed column using imidazolium based ionic liquids and MEA solu- tion. International Journal of Greenhouse Gas Control, 47:8-16. https://doi.org/10.1016/j.ijggc.2016.01.018

Downloads

Published

2024-09-24

How to Cite

Kemka, U. N., Ogbulie, T. E., Oguzie, K., Akalezi, C. O., Oguzie, E. E., Asamoah, W., & Nlemolisa, O. R. C. (2024). Algae, a biological purification tool for biogas upgrade: a review. EQA - International Journal of Environmental Quality, 64, 33–47. https://doi.org/10.6092/issn.2281-4485/19915

Issue

Section

Articles