Algae, a biological purification tool for biogas upgrade: a review
DOI:
https://doi.org/10.6092/issn.2281-4485/19915Keywords:
Algae, Carbon dioxide, Biogas, Biological purificationAbstract
One primary application of algae is in the production of biodiesel; however, they can also be employed as a means of removing carbon dioxide from biogas. Algae have recently attracted a lot of attention due to these advantages. Reducing carbon dioxide and possibly hydrogen sulfide concentrations improve biogas quality significantly. Because biogas is created as a mixture of methane gas and a significant amount of carbon dioxide, it needs to be cleaned (scrubbed) to create usable, ultra-pure biomethane. Algae offer a more environmentally friendly way to extract carbon dioxide from biogas and utilize it for photosynthesis whilst yielding itself for production of biodiesel. Algal culture systems for upgrading biogas present a viable substitute to traditional physical and/or chemical upgrading methods, as they are safer, more affordable, and less harmful to the environment hence contributing to a more sustainable circular economy. To completely explore the enormous potential of growing algae to capture carbon dioxide, more study is necessary. This review's objective is to present fact-based knowledge regarding algae's capacity to absorb carbon dioxide from biogas.
References
ABINANDAN S., SUBASHCHANDRABOSE S.R., VENKATESWARLU K., MEGHARAJ M. (2019) Soil microalgae and cyanobacteria: the biotechnological poten-tial in the maintenance of soil fertility and health. Critical Reviews in Biotechnology, 39(8):981-998. https://doi. org/ 10.1080/0738851.2019.1654972
ALAMI A.H., ALASAD S., ALI M., ALSHAMSI M. (2021) Investigating algae for CO2 capture and accumula-tion and simultaneous production of biomass for biodiesel production. Science of the Total Environment, 759: 143529. https://doi.org/10.1016/j.scitotenv.2020.143529
ANDERSEN R. A., LEWIN R. A. (2023) Algae. Encyclopedia Britannica. https://www.britannica.com/ science/algae
ANGELIDAKI I., TREU L., TSAPEKOS P., LUO G., CAMPANARO S., WENZEL H., KOUGIAS P.G. (2018) Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 36(2):452-466. https://doi.org/10.1016/j.biotechadv.2018.01.011
ANJOS M., FERNANDES B.D., VICENTE A.A., TEIXEIRA J.A., DRAGONE G. (2013) Optimization of CO2 Bio-Mitigation by Chlorella vulgaris. Bioresource Technology, 139:149–154. https://doi.org/10.1016/j.bio rtech.2013.04.032
ASLAM A., THOMAS-HALL S.R., MUGHAL T.A., SCHENK P.M. (2017) Selection and adaptation of micro-algae to growth in 100% unfiltered coal-fired flue gas. Bioresource Technology, 233: 217-283. https://doi.org/ 10. 016/j.biortech.2017.02.111
ATELGE M.R., SENOL H., DJAAFRI M., HANSU T.A., KRISA D., ATABANI A., ESKICIOGLU C., MURATÇOBANO ˘GLU H., UNALAN S., KALLOUM S., AZBAR N., KIVRAK H.D. (2021) A Critical Overview of the State-of-the-Art Methods for Biogas Purification and Utilization Processes. Sustainability, 13: 11515. https://doi.org/10.3390/su132011515
AWE O.W., ZHAO Y., NZIHOU A., MINH D.P., LYCZKO N. (2017) A Review of Biogas Utilization, Purification and Upgrading Technologies Review. Waste Biomass Valorization, 8:267–283. https://doi.org/:10. 1007/s12649-016-9826-4
BAHRUN M.H.V., BONO A., OTHMAN N., ZAINI M.A.A. (2022) Carbon dioxide removal from biogas through pressure swing adsorption – A review. Chemical Engineering Research and Design, 183:285-306. https://doi.org/10.1016/j.cherd.2022.05.012
BARKIA I., SAARI N., MANNING S.R. (2019) Micro-algae for high-value products towards human health and nutrition. Marine Drugs, 17(5):304. Doi:10.3390/md17 050304
BUCK-WIESE H., ANDSKOG M.A., NGUYEN P.N., BLIGH M., ASMALA E., VIDAL-MELGOSA S., LIEBEKE M., GUSTAFSSON C., HEHEMANN J. (2022) Fucoid brown algae inject fucoidan carbon into the ocean. Proceedings of the National Academy of Science 120 (1) e2210561119. https://doi.org/10.1073/pnas.2210561119
CHANDEL P., MAHAJAN D., THAKUR K., KUMAR R., KUMAR S., BRAR B., SHARMA D., SHARMA, A.K.
(2023) A review on plankton as a bioindicator: a promising tool for monitoring water quality. World Water Policy, 10(1):213-232. https://doi.org/10.1002/wwp2.12137
CHAUDHARY R., DIKSHIT A.K., TONG Y.W. (2018) Carbon-dioxide bio fixation and phycoremediation of mu- nicipal wastewater using Chlorella vulgaris and Scenedesmus obliquus. Environmental Science and Pollution Research, 25: 20399-20406. https://doi.org/10.1007/s11356-017-9575-3
CHEAH W.Y., SHOW P.L., CHANG J.S., LING T.C., JUAN J. C. (2015) Bio sequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technology, 184:190-201. https://doi.org/10.1016/j.bior tech.2014.11.026
CHEIRSILP B., WANTIP K., CHAI-ISSARAPAP N., MANEECHOTE W., PEKKOH J., DUANGJAN K., PUMAS C., PATHOM-AREE W., SRINUANPAN S. (2022) Enhanced production of astaxanthin and co-biopro- ducts from microalga Haematococcus sp. integrated with valo- rization of industrial wastewater under two-stage LED light illumination strategy. Environmental Technology and Inno- vation, 28:102620. https://doi.org/10.1016/j.eti.2022.1026
CHEIRSILP B., MANEECHOTE W., SRINUANPAN S., ANGELIDAKI L. (2023) Micro-algae as tools for bio- circular-green economy: Zero-waste approaches for su- stainnable production and biorefineries of microalgal bio- mass.Bioresource Technology, 387:129620. https://doi. org/10.1016/j.biortech.2023.129620
CHEN C.Y., KUO E.W., NAGARAJAN D., HO S.H., DONG C.D., LEE D.J., CHANG J.S. (2020) Cultivating
Chlorella sorokiniana AK-1 with swine wastewater for simul- taneous wastewater treatment and algal biomass produc- tion. Bioresource Technology, 302:122814. https://doi. org/10.1016/j.biortech.2020.122814
DAS J., RAVISHANKAR H., LENS N.L.P. (2022) Biological biogas purification: Recent developments, challenges and future prospects. Journal of Environmen-tal Management 304: 114198. https://doi.org/10.1016/j. jenvman.2021.114198
DASAN Y.K., LAM M.K., YUSUP S., LIM J.W., SHOW P.L., TAN I.S., LEE K.T. (2020) Cultivation of Chlorella Vulgaris Using Sequential-Flow Bubble Column Photobio reactor: A Stress-Inducing Strategy for Lipid Accumulation and Carbon Dioxide Fixation. Journal of CO2 Utilization 41: 101226. https://doi.org/10.1016/j.jcou.2020.101226
DING G.T., MOHD YASIN N.H., TAKRIFF M.S., KAMARUDIN K.F., SALIHON J., YAAKOB Z., MOHD HAKIMI N.I.N. (2020) Phytoremediation of Palm Oil Mill Effluent (POME) and CO2 Fixation by Locally Isolated Micro-algae: Chlorella Sorokiniana UKM2, Coelastrella sp. UKM4 and Chlorella Pyrenoidosa UKM7. Journal of Water Process Engineering 35: 101202. https://doi.org/10.1016/j.jwpe.2020.101202.
DUARTE J.H., COSTA J.A.V. (2017) Synechococcus nidulans from a thermo-electric coal power plant as a potential CO2 mitigation in culture medium containing flue gas wastes. Bioresource Technology 241: 21-24. https://doi.org/ 10.1016/j.biotech.2017.05.064
EL-ABD N.M., HAMOUDA R.A., DAWOUD G.T.M. (2018) Impacts of chlorella vulgaris supplementation to chicken drinking water on amino acids, fatty acids, minerals content of broiler chicken meats. Egyptian Journal of Nu- trition and Feeds, 21(2): 509-518. https://doi.org/10.2160 08/EJNF.2018.75608
FERNÁNDEZ I., ACIÉN F.G., FERNÁNDEZ J.M., GUZMÁN J.L., MAGÁN J.J., BERENGUEL M. (2012)
Dynamic model of microalgal production in tubular photo- bioreactors. Bioresource Technology, 126: 172-181. https://doi.org/10.1016/j.biortech.2012.08.087
FERREIRA A., BASTOS C.R., MARQUES-DOS SAN- TOS C., ACIÉN-FERNANDEZ F.G., GOUVEIA L. (2023) Algaeculture for agriculture: from past to future. Frontiers in Agronomy, 5:1064041.https://doi.org/10. 3389/fargo.2023.1064041
FU J., LI P., LIN Y., DU H., LIU H., ZHU W., REN H. (2022) Fight for carbon neutrality with state of the art negative carbon emission technologies. Eco-Environment and Health, 1(4): 259-279. Doi: 10.1016/j.eehl.2022.11.005
GANI P., HUA A.K., SUNAR N.M., MATIAS- PERALTA H.M., APANDI N. (2021) The influence of photoperiod, light intensity, temperature and salinity on the growth rate and biomass productivity of Botryococcus sp. In IOP Conference Series: Earth and Environmental Science 646(1): 012006. IOP Publishing. https://doi.org/ 10.1088/1755-1315/646/1/012006
GOLMAKANI A., NABAVI S.A., WADI B., MANOVIC V. (2022) Advances, challenges, and perspec-tives of biogas cleaning, upgrading, and utilization. Fuel 317:123085. https://doi.org/10.1016/j.fuel.2021.123085
HARIZ H.B., TAKRIFF M.S., YASIN N.H.M., BA- ABBAD M.M., HAKIMI N.I.N.M. (2019) Potential of the
microalgae-based integrated wastewater treatment and CO2 fixation system to treat Palm Oil Mill Effluent (POME) by indigenous microalgae; Scenedesmus sp. and Chlorella sp. Journal of Water Process Engineering, 32: 100907. https://doi.org/10.1016/j.jwpe.2019.100907
HARRIS N., MANAN H., JUSOH M., KHATOON H., KATAYAMA T., KASON N.A. (2022) Effect of different salinity on the growth performance and proximate compo- sition of isolated indigenous micro-algae species. Aquacul- ture Reports 22: 100925. https://doi.org/10.1016/j.aqrep.
100925
HERNANDEZ-MIRELES,I., VAN DER STEL R., GOETHEER E. (2014) New methodologies for integra- ting algae with CO2 capture. Energy Procedia, 63:7954- 7958. https://doi.org/10.1016/j.egypro.2014.11.830
HOSSEINI N.S., SHANG H., SCOTT J.A. (2018) Biosequestration of Industrial Off-Gas CO2 for Enhanced Lipid Productivity in Open Micro-algae Cultivation Systems. Renewable Sustainable Energy Review 92:458– 469. https://doi.org/10.1016/j.rser.2018.04.086
HOYOS E.G., KURI R., TODA T., MU˜NOZ, R. (2024) Innovative design and operational strategies to improve CO2 mass transfer during photosynthetic biogas upgrading. Bioresource Technology 391:129955. https://doi.org/ 10.1016/j.biortech.2023.129955
IGHALO J.O., DULTA K., KURNIAWAN S.B., OMO- ARUKHE F. O., EWUZIE U., ESHIEMOGIE S.O., OJO A.U., ABDULLAH S.R.S. (2022) Progress in microal- gae application for CO2 sequestration. Cleaner Chemical Engineering, 3:100044. https://doi.org/10.1016/j.clce.2022.100044
JAISWAR S., CHAUHAN P. S. (2017) Applied aspect of microalgae in monitoring of heavy metals. Mining of mi- crobial wealth and Metagenomics, 431-442. https://doi. org/10.1007/978-981-10-5708-3_23
JALILIAN N., NAJAFPOUR G.D., KHAJOUEI M. (2020) Macro and micro algae in pollution control and biofuel production – a review. ChemBioEng Reviews, 7(1): 18-33. https://doi.org/10.1002/cben.20100014
KAO C.Y., CHIU S.Y., HUANG T.T., DAI L., HSU L.K., LIN C.S. (2012) Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgra- ding. Applied Energy, 93:176-183. https://doi.org/10.1016/j.apenergy.2011.12.082
KASSIM M. A., MENG T.K. (2017). Carbon dioxide (CO2) bio-fixation by micro-algae and its potential for biorefinery and biofuel production. Science of the Total Environment, 584-585: 1121-1129. https://doi.org/10. 1016/j.scitotenv.2017.01.172
KIM T.H., LEE Y., HAN S.H., HWANG S.J. (2013) The effects of wavelength and wavelength mixing ratios on micro-algae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresource Technology 130:75–80. https://doi.org/10.1016/j.biorte ch.2012.11.134
KNAPIK E., KOSOWSKI P., STOPA J. (2018) Cryogenic liquefaction and separation of CO2 using nitrogen removal unit cold energy. Chemical Engineering Research and Design, 131:66-79. https://doi.org/10.1016/j.cherd.2017.12.027
KRZEMIŃSKA I., PAWLIK-SKOWROŃSKA B., TRZCIŃSKA M., TYS J. (2014) Influence of photoperiods on the growth rate and biomass productivity of green micro-algae. Bioprocess and Biosystems Engineering, 37(4):735–741. https://doi: 10.1007/s00449-013-1044-x.
KUMAR V., NANDA M., KUMAR S., CHAUHAN P.K. (2018) The Effects of Ultraviolet Radiation on Growth, Biomass, Lipid Accumulation and Biodiesel Properties of Micro-algae. Energy Sources Part A Recovery. Utilization, and Environmental Effects, 40(7): 787–793. https://doi. org/10.1080/15567036.2018.1463310
KUMARI A., KUMAR A., PATHAK A.K., GURIA C. (2014) Carbon dioxide assisted Spirulina platensis cultivation using NPK -10:26:26 complex fertilizer in sintered disk chromatographic glass bubble column. Journal of Carbon dioxide Utilization, 8: 49-59. https://doi.org/10.1016/ j.jcou.2014.07.001
LEI L., BAI L., LINDBRÅTHEN A., PAN F., ZHANG X., HE X. (2020) Carbon membranes for CO2 removal: Status and perspectives from materials to processes. 401: 126084. https://doi.org/10.1016/j.cej.2020.126084
LI G., XIAO W., YANG T., LYU T. (2023) Optimization and Process Effect for Micro-algae Carbon Dioxide Fixa- tion Technology Applications Based on Carbon Capture: A Comprehensive Review 9:35. https://doi.org/10.3390/c 9010035
LI S., LI X., HO S.H. (2022) How to enhance carbon cap- ture by evolution of microalgal photosynthesis? Separation and Purification Technology, 291: 120951. https://doi. org/b10.1016/j.seppur.2022.120951
LI G., ZHANG J., LI H., HU R., YAO X., LIU Y., ZHOU Y., LYU T. (2021) Towards high-quality biodiesel production from microalgae using original and anaerobical- ly-digested livestock wastewater. Chemosphere, 273:12857 8. https://doi.org/10.1016/j.chemosphere.2020.128578
LI Q., FU L., WANG Y., ZHOU D., RITTMANN B.E. (2018) Excessive phosphorus caused inhibition and cell damage during heterotrophic growth of Chlorella regularis. Bioresource Technology 268:266–270. https://doi.org/10. 1016/j.biortech.2018.07.148
LI S., SONG C., LI M., CHEN Y., LEI Z., ZHANG Z. (2020) Effect of different nitrogen ratio on the Per- formance of CO2 absorption and micro-algae conversion (CAMC) Hybrid System. Bioresource Technology 306: 123126. https://doi.org/10.1016/j.biortech.2020.123126
LI Y., ALAIMO C.P., KIM M., KADO N.Y., PEPPERS J., XUE J., WAN C., GREEN P. G., ZHANG R., JENKINS B.M., VOGEL C.F.A., WUERTZ S., YOUNG T.M., KLEEMAN M.J. (2019) Composition and toxicity of biogas produced from different feedstocks in California. Environmental Science and Technology, 53(19):11569– 11579. https://doi.org/10.1021/macs.est.9b03 9b03003
LIANG Y., TANG J., LUO Y., KACZMAREK M.B., LI X., DAROCH M. (2019) Thermosynechococcus as a Thermophilic Photosynthetic Microbial Cell Factory for CO2 Utilization. Bioresource Technology 278: 255–265. https://doi.org/10.1016/j.biortech.2019.01.089
LYCZKO N., NZIHOU A., AWE O.W., ZHAO Y., MINH D.P. (2017) A Review of Biogas Utilization, Purification and Upgrading Technologies. Waste Biomass Valorization 8:267–83. https://doi.org/10.1007/s12649-
-9826-4.
MANN G., SCHLEGEL M., SCHUMANN R.,SAKALAUSKAS A. (2009) Biogas-conditioning with micro-algae. Agronomy Research, 7(1):33-38. Corpus ID:55836016
MEERANAYAK U.F.J., NADAF R.D., TORAGALL M. M., NADAF U., SHIVASHARANA C.T. (2020) The role
of algae in sustainable environment: a review. Journal of Algal Biomass Utilization, 11(2): 28-34.
MOREIRA D., PIRES J.C. (2016) Atmospheric CO2 cap- ture by algae: negative carbon dioxide emission path. Bioresource Technology, 215: 371-379. https://doi.org/ 10.1016/j.biortech.2016.03.060
MOREIRA J. B., SANTOS T. D., DUARTE J. H., BEZERRA P. Q. M., DE MORAIS M. G., COSTA J. A. V. (2023) Role of micro-algae in circular bioeconomy: from waste treatment to biofuel production. Clean Technologies and Environmental Policy, 25(2):427-437. https://doi.org/ 10.1007/s10098-021-02149-1.
MUÑOZ R., MEIER L., DIAZ I., JEISON D. (2015) A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Review Environmental Science Bio Technology, 14:727–759. https://doi.org/10.1007/s11157-015-9379-1
MUSA M., AYOKO G.A., WARD A., RÖSCH C., BROWN R.J., RAINEY T.J. (2019) Factors affecting mi- croalgae production for biofuels and the potentials of che- mometric methods in assessing and optimizing producti- vity. Cells, 8(8): 851. https://doi.org/10.3390/cells8080851
NITHIYA E.M., TAMILMANI J., VASUMATHI K.K., PREMALATHA M. (2017) Improved CO2 fixation with Oscillatoria sp. in response to various supply frequencies of CO2 supply. Journal of Carbon dioxide Utilization 18:198- 205. https://doi.org/10.1016/j.jcou.2017.01.025
ONYEAKA H., MIRI T., OBILEKE K., HART A., ANUMUDU C., AL-SHARIFY Z.T. (2021) Minimizing carbon footprint via micro-algae as a biological capture.Carbon Capture Science and Technology, 1: 100007. https://doi.org/10.1016/j.ccst.2021.100007
ORUGANTI R.K., KUMARA M.K., TEJAVATH R., SRIARIYANUN M., BHATTACHARYYA D. (2023) Spirulina Cultivation Using Biogas CO2 as the Carbon Source: Preliminary Study on Biomass Growth and Productivity. E3S Web of Conferences, 428:01005. https://doi.org/10.1051/e3sconf/20234280100
PAPURELLO D., SILVESTRI S., LANZINI A. (2019) Biogas cleaning: Trace compounds removal with model validation. Separation and Purification Technology, 210: 80-92. https://doi.org/10.1016/j.seppur.2018.07.081
PASICHNYK M., STANOVSKY P., POLEZHAEV P., ZACH B., ŠYC M., BOBÁK M., JANSEN J.C.,PŘIBY M., BARA J.E., FRIESS K., HAVLICA J., GIN D.L., NOBLE R.D., IZÁK P. (2023) Membrane technology for chal- lenging separations: Removal of CO2, SO2 and NOx from flue and waste gases. Separation and Purification Techno- logy, 323:124436. https://doi.org/10.1016/j.seppur.2023.124436
PAUL S., BERA S., DASGUPTA R., MONDAL S., ROY S. (2021) Review on the recent structural advances in open and closed systems for carbon capture through algae. Ener- gy Nexus, 4:100032. https://doi.org/10.1016/j.nexus. 2021.10032
POSADAS OLMOS E. (2016) Innovative algal-bacterial processes for wastewater treatment: a further step towards full scale implementation. Doi:10.35376/10324/18777
POURJAMSHIDIAN R., ABOLGHASEMI H., ESMAILI M., AMREI H.D., PARSA M., REZAEI S. (2019) Carbon
dioxide bio fixation by Chlorella sp. In a bubble column re- actor at different flow rates and CO2 concentrations. Brazi- lian Journal of Chemical Engineering, 36(2): 639-645. https://doi.org/10.1590/0104-6632.20190362s20180151
PREMARATNE M., LIYANAARACHCHI V.C., NISHSHANKA G.K.S.H., NIMARSHANA P.H.V., ARIYADASA T.U. (2021) Nitrogen-Limited Cultivation of Locally Isolated Desmodesmus sp. for Sequestration of CO2 from Simulated Cement Flue Gas and Generation of Feedstock for Biofuel Production. Journal of Environmental Chemical Engineering, 9:105765. https://doi.org/10.1016/j.jece.2021.105765
QU W., SHOW P.L., HASUNUMA T., HO S.H. (2020) Optimizing real swine wastewater treatment efficiency and carbohydrate productivity of newly microalga Chlamydomo- nas sp. QWY37 used for cell-displayed bioethanol produc- tion. Bioresource Technology, 305: 123072. https://doi. org/10.1016/j.biortech.2020.123072
RAI M.P., GUPTA S. (2017) Effect of media composition and light supply on biomass, lipid content and FAME profile for quality biofuel production from Scenedemus abundans. Energy Conversion Management, 141:85-92. https://doi.org/10.1016/j.enconman.2016.05.018
RAMARAJ R., DUSSADEE N. (2015) Biological Purification Processes for Biogas Using Algae Cultures: A Review. International Journal of Sustainable and Green Energy. Special Issue: Renewable Energy Applications in the Agricultural Field and Natural Resource Technology 4(1):20-32. https://doi.org/10.11648/j.ijrse.s.201 5040101.14
RAZZAK S.A., ALI S.A.M., HOSSAIN M.M., DELASA H. (2017) Biological CO2 Fixation with Production of Micro-algae in Wastewater—A Review. Renewable Sustai- nable Energy Review, 76:379–390. https://doi.org/10.10 16/j.rser.2017.02.038
RAZZAK S.A., ILYAS M., ALI S.A.M., HOSSAIN M.M. (2015) Effects of CO2 Concentration and pH on Mixo- trophic Growth of Nannochloropsis oculata. Applied Bioche- mistry Biotechnology, 176:1290–1302. https://doi.org/10. 1007/s12010-015-1646-7
SAADAOUI I., RASHEED R., AGUILAR A., CHERIF M., AL JABRI H., SAYADI S., MANNING S.R. (2021)
Microalgal-based feed: promising alternative feedstocks for livestock and poultry production. Journal of Animal Scien- ce and Biotechnology, 12(1):76. https://doi.org/10.1186/ s40104-021-00593-z
SACHDEVA N., GUPTA R.P., MATHUR A.S., TULI D.K. (2016) Enhanced Lipid Production in Thermo- Tolerant Mutants of Chlorella Pyrenoidosa NCIM 2738. Bioresource Technology, 221:576–587. https://doi.org/10. 1016/j.biortech.2016.09.049
SADVAKASOVA A.K., KOSSALBAYEV B.D., BAUENOVA M.O., BALOUCH H., LEONG Y.K., ZAYADAN B.K., HUANG Z., ALHARBY H.F., TOMO T., CHANG J., ALLAKHVERDIEV S.I. (2023) Micro-algae as a key tool in achieving carbon neutrality for bioproduct production. Algal Research 72:103096. https://doi.org/10.1016/j.algal.2023.103096
SAIFUDDIN N., AISSWARYA K., JUAN Y. P., PRIATHARSINI P. (2015) Sequestration of high carbon dioxide concentration for induction of lipids in microalgae for biodiesel production. Journal of Applied Sciences, 15(8): 1045. https://doi.org/10.3923/jas.2015.1045.1058
SFORZA E., GRIS B., DE FARIAS SILVA C. E., MOROSINOTTO T., BERTUCCO A. (2014) Effects of light on cultivation of Scenedesmus obliquus in batch and continuous flat plate photobioreactor. Chemical Enginee- ring Transactions 38:211–216. https://doi.org/10.3303/ CET1438036
SINGH J., DHAR D.W. (2019) Overview of Carbon Capture Technology: Microalgal Biorefinery Concept and State-of-the-Art. Frontiers in Marine Science 6:29 https://doi.org/10.3389/fmars.2019.0002S9
SINGH H.M., TYAGI V.V., KOTHARI R., AZAM R., SLATHIA P.S., SINGH B. (2020) Bioprocessing of cultivated Chlorella pyrenoidosa on poultry excreta leachate to enhance algal biomolecule profile for resource recove- ry. Bioresource Technology, 316: 123850. https://doi. org/10.1016/j.biortech.2020.123850
SIQUEIRA R.M., FREITAS G.R., HUGO R., PEIXOTO, DO NASCIMENTO J.F., MUSSE A.P.S., ANTONIO TORRES E.B., AZEVEDO D.C.S., BASTOS-NETO M. (2017). Carbon-dioxide capture by pressure swing adsorption. Energy Procedia 114:2182– 2192. https://doi. org/10.1016/j.egypro.2017.03.1355
SONG C., LIU Q., DENG S., LI H., KITAMURA Y.(2019) Cryogenic-based CO2 capture technologies: State- of-the-art developments and current challenges. Renewable and Sustanable Energy Reviews, 101:265-278. https://doi. org/10.1016/j.rser.2018.11.018
SREELAKSHMI K.P., SARMA S., CHOUDHURY S.,NIRMAL L. A., JACOB S. (2021) Enrichment of biogas by microalgal scrubbing system and value-added products synthesis. In Journal of Physics: Conference Series 1: 012062. IOP Publishing. https://doi.org/10.1088/1742- 6596/2007/1/012062
STARR K., GABARRELL X., VILLALBA G., TALENS L., LOMBARDI L. (2012) Life cycle assessment of biogas upgrading technologies. Waste Management, 32: 991-999. https://doi.org/10.1016/j.wasman.2011.12.016
SUMARDIONO S., BUDIYONO I.S., SASONGKO S.B. (2014) Utilization of biogas as carbon dioxide provider for Spirulina platensis culture. Current Research Journal of Biological Sciences, 6 (1):53-59. ISSN: 2041- 076X
THOMAS D.M., MECHERY J., PAULOSE S.V. (2016) Carbon dioxide capture strategies from flue gas using mi- croalgae: a review. Environmental Science and Pollution Research, 23:16926-16940. https://doi.org/10.1007/ s11356-016-7158-3
TIBBETTS S.M., MILLEY J.E., LALL S.P. (2015) Chemical composition and nutritional properties of fresh- water and marine microalgal biomass cultured in photo bioreactors. Journal of Applied Phycology, 27: 1109-1119. https://doi.org/10.1007/s10811-014-0428-x
VELASCO A., FRANCO-MORGADO M., SALDIVAR A., CUETERO-MARTÍNEZ Y., BUITRÓN G., DE LOS COBOS-VASCONCELOS D., MONROY Ó., GONZÁLEZ-SÁNCHEZ A. (2023) Organic leachate and biogas utilization in outdoor microalgae cultivation under alkaline conditions at pilot-scale. Waste and Biomass Valorization, 1-13. https://doi.org/10.1007/ s12649-023-02223-3
VERMA R., KUMARI K.K., SRIVASTAVA A., KUMAR A. (2020) Photoautotrophic, mixotrophic, and heterotrophic culture media optimization for enhanced microalgae production. Journal of Environmental Chemi- cal Engineering, 8(5): 104149. https://doi.org/10.1016/ j.jece.2020.104149
VIEGAS C., GOUVEIA L., GONÇALVES M. (2021) Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy. Journal of Environmental Management, 286: 112187. https://doi.org/10.1016/j.jenvman.2021.112187
WAHIDIN S., IDRIS A., SHALEH S. R. M. (2013) The influence of light intensity and photoperiod on the growth and lipid content of micro-algae Nannochloropsis sp. Bioresource Technology, 129:7–11. https://doi.org/10. 1016/j.biortech.2012.11.032
WILBERFORCE T., BAROUTAJI A., SOUDAN B., AL-ALAMI A.H., OLABI A.G. (2019) Outlook of carbon capture technology and challenges. Science of the Total Environment, 657:56-72. https://doi.org/10.1016/ j.scitotenv.2018.11.424
XIA A., HERRMANN C., MURPHY J.D. (2015) How do we optimize third-generation algal bio-fuels? Biofuels Bioproduction and Biorefining, 9(4):358–367. https:// doi.org/10.1002/bbb.1550
YAHYA L., HARUN R., ABDULLAH L.C. (2020) Screening of Native Micro-algae Species for Carbon Fixation at the Vicinity of Malaysian Coal-Fired Power Plant. Scientific Reports 10(1): 22355. https://doi.org/ 10.1038/s41598-020-79316-9
ZABED H.M., AKTER S., YUN J., ZHANG G., ZHANG Y., QI X. (2020) Biogas from microalgae: Technologies, challenges and opportunities. Renewable and Sustainable Energy Reviews, 117: 109503. https:// doi.org/10.1016/j.rser.2019.109503
ZAYADAN B.K., SADVAKASOVA A.K., MATORIN, D.N., AKMUKHANOVA N.R., KOKOCINSKI M., TIMOFEEV N.P., BALOUCH K., BAUENOVA M.O.(2020) Effect of cadmium ions on some biophysical para- meters and ultrastructure of Ankistrodesmus sp. В-11 Cells. Russian Journal of Plant Physiology, 67: 845-854. DOI:10.1134/S1021443720040196
ZHAO B., SU Y. (2014) Process Effect of Microalgal- Carbon Dioxide Fixation and Biomass Production: A Review. Renewable Sustainable Energy Review 31:121– 132. https://doi.org/10.1016/j.rser.2013.11.054
ZHOU W., WANG J., CHEN P., JI C., KANG Q., LU B., LI K., LIU J., RUAN R. (2017) Bio-mitigation of carbon dioxide using microalgal systems: advances and perspectives. Renewable and Sustainable Energy Reviews, 76:1163-1175. https://doi.org/10.1016/j.rser.2017.03.065
ZIOBROWSKI Z., KRUPICZKA R., ROTKEGEL A. (2016) Carbon dioxide absorption in a packed column using imidazolium based ionic liquids and MEA solu- tion. International Journal of Greenhouse Gas Control, 47:8-16. https://doi.org/10.1016/j.ijggc.2016.01.018
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ugochi Nneka Kemka, Toochukwu Ekwutosi Ogbulie, Kanayo Oguzie, Christogonus Oudney Akalezi, Emeka Emmanuel Oguzie, William Asamoah, Oluchi Rose Colette Nlemolisa
This work is licensed under a Creative Commons Attribution 4.0 International License.