Quality and fertility status of soils in the groundnuts (Arachis hypogaea L.) production basin of Ngong, North Cameroon

Authors

  • Gabriel Ange Teguia Kamdem Department of Earth Sciences, Faculty of Science, University of Yaoundé, Yaoundé
  • Jacques Roberto Tueche Institute of Agricultural Research for Development, Yaoundé
  • Robert Temdjim Department of Earth Sciences, Faculty of Science, University of Yaoundé, Yaoundé
  • Lawrence Tatanah Nanganoa Institute of Agricultural Research for Development, Ekona
  • Simon Djakba Basga Institute of Agricultural Research for Development, Maroua
  • Cedrick Nguemezi Department of Earth Science, Faculty of Science, University of Dschang, Dschang
  • Paul Tematio Department of Earth Science, Faculty of Science, University of Dschang, Dschang

DOI:

https://doi.org/10.6092/issn.2281-4485/20147

Keywords:

soil fertility, Soil quality, soil indicators, Ngong, groundnut production

Abstract

Ngong is a famous groundnut (Arachis hypogaea L.) producing locality in Cameroon, contributing to the supply of local markets and neighboring countries. Official figures showed gradual yield decrease over recent years,  attri - butable to various factors, with poor soil conditions among the most acute. However, missing information on soil quality and fertility status in these areas is jeopardizing efforts of improving agricultural productivity. This study aimed to assess the soil fertility status in the groundnut production basin of Ngong. Three main ground-nut production areas (Douka-longo, Tamoundé1, and Sabongari) of the basin were selected and twenty-three topsoil samples (0 – 30 cm) collected. Soil fertility attributes (index of structural stability (ISS), index of soil sealing (IB), Forestier index (IF), aluminium toxicity (m) and Soil Quality Index (SQI)) were assessed. The studied sites were effectively poor in soil fertility, having very low values of N, P, K, S, and cation exchange capacity (CEC). These soils are under high risk of degradation because of the low soil aggregate stability (ISS < 9%) and fertility (IF < 1.5) indexes. The SQI ranged from 0 to 0.4 indicative of poor fertility with degraded soil condition. The main factors controlling soil quality include Ca, pH, organic matter (OM), available P, total Nitrogen and CEC. Long-term maintenance of soil quality requires better integrated soil fertility management practices. Optimal soil nutrients management system such as the application of organo-mineral amendments rich in N P, K, Ca and Mg to promote plant root establishment, which will also improve the soil structure should be considered to enhance the soil fertility status along with the inclusion of good cultivars for yield improvement.

References

AGUIEB Z., MESSAI, M. (2015) Valorisation des arachides ( Arachis hypogea L.) cultivées à la Wilaya D’El-Oued

AMANI I., TEMGOUA E., AZINWI P., KONDO C. (2022) Utilisation de la légumineuse de couverture Desmodium intortum pour le contrôle de l'érosion hydrique dans les Hautes Terres de l'Ouest Cameroun. Étude et Gestion des Sols, 29:351-363

ANDREWS S.S., KARLEN D.L., MITCHELL, J.P. (2002) A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agricultural Ecosystem Environment. 90:25–45. https://doi.org/10.1016/S0167-8809(01)00174-8.

ARGAW A., (2017) Organic and inorganic fertilizer application enhances the effect of Bradyrhizobium on nodulation and yield of peanut (Arachis hypogea L.) in nutrient depleted and sandy soils of Ethiopia. International. Journal. Recycl. Org. Waste Agric., 6:219–231. https://doi.org/10.1007/s40093-017-0169-3.

BARBIER B., WEBER J., DURY S., HAMADOU O., SEIGNOBOS C. (2003) Savanes africaines : des espaces en mutation, des acteurs face à de nouveaux défis.

BASGA S.D., OUMAROU P.M., BALNA J., ABIB F.C., TSOZUE D., NJIEMOUN A. (2018) Sandy soil fertility restoration and crops yields after conversion of long-term Acacia senegal planted fallows in North Cameroon. African Journal of Agricultural Research 13(40):2154-2162. https://doi.org/10.5897/AJAR 2018. 13283

BASGA S.D., NGUETNKAM J.P. (2015) Fertilizing effect of swelling clay materials on the growth and yield of bean “Phaseolus vulgaris’’ on the sandy ferruginous soils from Mafa Tchéboa (North Cameroun, Central Africa). International Journal of Plant & Soil Science (5)1:10-24. https://doi.org/10.9734/IJPSS/2015/13180

BATIONO A., HARTEMINK A., LUNGO O., NAIMI M., OKOTH P., SMALING E., THIOMBIANO L., (2006) African soils: their productivity and profitability of fertilizer use : background paper for the African Fertilizer Summit 9-13th June 2006, Abuja, Nigeria.

BEERNAERT F., BITONDO D. (1992) Simple and Practical Methods to Evaluate Analytical Data of Soil Profiles. CUDs Dschang Soil Sciences Department, Belgium Cooperation, Dschang. - References - Scientific Research Publishing [WWW Document]. URL https://www.scirp.org/reference/referencespapers.aspx?referenceid=2971495. (accessed 2.8.23).

BEGUIN M., PUMAIN D. (2000) La représentation des données géographiques- Statistique et cartographie, 4e ed. Librairie Eyrolles.

BEVERWIJK A. (1967). Particle size analysis of soils by means of the hydrometer method. Sediment. Geol., 1:403–406. https://doi.org/10.1016/0037-0738(67)90070-X.

BIAOU O.D.B., SAIDOU A., BACHABI F.X., PADONOU G.E., BALOGOUN I. (2018) Effet de l’apport de différents types d’engrais organiques sur la fertilité du sol et la production de la carotte (Daucus carota L.) sur sol ferralitique au sud Bénin. Int. J. Biol. Chem. Sci. 11:2315. https://doi.org/10.4314/ijbcs.v11i5.29.

BLAKE G.R., (2015) Bulk density. Methods Soil Anal. Part 1 Phys. Mineral. Prop. Incl. Stat. Meas. Sampl. 374–390.https://doi.org/10.2134/AGRONMONOGR9.1.C30

BONZI M., LOMPO F., DELWENDE I. SEDOGO P. (2008) Influence du mode de gestion de la fertilité des sols sur l’évolution de la matière organique et de l’azote dans les zones agro écologiques du Burkina Faso. Synth. soil, water Nutr. Manag. Res. Volta Basin Chapter 5.

BRABANT P., HUMBEL P.F. (1974) Carte pédologique du Cameroun poli a 1/200.000 office de la recherche scientifique et technique outre-mer centre ORSTOM de Yaoundé.

BRABANT P., GAVAUD M., O.R.S.T.O.M. (Agency : France) (1985) Institute of Agronomic Research (Cameroon). Les sols et les ressources en terres du Nord-Cameroun : (provinces du nord et de l’extrême-nord). Edition de l’ORSTOM.

BREJDA J.J., MOORMAN T.B., KARLEN D.L., DAO T.H. (2000) Identification of regional soil quality factors and indicators : I. Central and Southern High Plains. Soil Sci. Soc. Am. J. 64: 2115–2124. https://doi.org/10.2136/ SSSAJ2000.6462115X.

BUONDONNO A., RASHAD A.A., COPPOLA E. (1995) Comparing tests for soil fertility. II. The hydrogen peroxide/sulfuric acid treatment as an alternative to the copper/selenium catalyzed digestion process for routine determination of soil nitrogen-Kjeldahl https://agris.fao. org/agris-search/search.do?recordID=US9555112.

CALVET R., (2003) Le sol Propriétés et fonctions. Tome 2 Phénomènes physiques et chimiques. - References - Scientific Research Publishing Appl. Agron. Environ mentales. Fr. Agric. Ed. 511.

CHADWIK O.A., GRAHAM R.C. (2000) Pedogenic Processes. CRC Handb. Soil Sciences.

CHAUSSOD R., NICOLARDOT B., CATROUX G. (1986). Mesure en routine de la biomasse microbienne des sols par la méthode de fumigation au chloroforme. Sci. du sol 201–211.

COBO J.G., DERCON G., CADISCH G. (2011). Nutrient balances in African land use systems across different spatial scales : a review of 50 approaches , challenges and progress 51 52.

COMPAORÉ E., FROSSARD E., SINAJ S., FARDEAU J.C., Morel, J.L. (2011). Influence of Land-Use Management on Isotopically Exchangeable Phosphate in Soils from Burkina Faso, 201-223. http://dx.doi.org/ 10.1081/CSS-120017426. 201–223

DABIN B. (1961) Les facteurs de la fertilité des sols des régions tropicales en culture irriguée. Bull. Assoc. française d’Etude du Sol 108–130.

DAVET P. (1996) Vie microbienne du sol et production végétale, Librairie Quae : des livres au coeur des sciences.

DAY P.R. (2015) Particle Fractionation and Particle-Size Analysis. Methods Soil Anal. Part 1 Phys. Mineral. Prop. Incl. Stat. Meas. Sampl. 545–567. https://doi.org/ 10.2134/AGRONMONOGR9.1.C43

DE PAUW E. (2019) Projet Ressources du Sol et du Sous-sol des Régions du Nord et du Sud-Ouest Project on Soil and Subsoil Resources of North and South-West Regions Mission report follow-up workshop-nkolbisson, 12-16 NOVEMBER 2019.

DEMOLON A. (1932) La Dynamique du sol. J. d’agriculture Tradit. Bot. Appliquée, 12:934–940. https://doi.org/10.3406/JATBA.1932.5173.

EL TAHIR B.A., AHMED D.M., ARDÖ J., GAAFAR A.M., SALIH A.A. (2009) Changes in soil properties following conversion of Acacia senegal plantation to other land management systems in North Kordofan State, Sudan. J. Arid Environ. 73:499–505. https://doi.org/ 10.1016/J.JARIDENV.2008.11.007.

EMERSON R.M. (1976) Social Exchange Theory. Annu. Rev. Sociol., 2:335–362. https://doi.org/10.1146/A NNUREV.SO.02. 080176.002003.

FABRE B., KOCKMA F., (2002). La pratique du chaulage : Conseil au niveau de l’exploitation

FOLKERT VAN OORT. (2022). Les Mots de l’agronomie.

FONCEKA D. (2010) Elargissement de la base génétique de l’arachide cultivée (Arachis hypogaea) : applications pour la construction de populations, l’identification de QTL, et l’amélioration de l’espèce cultivée.

FAO - Food and Agriculture Organization of the United Nations (2006) World reference base for soil resources, 2006 : a framework for international classification, correlation and communication. Food and Agriculture Organization of the United Nations.

FAO - Food and Agriculture Organization of the United Nations (2014) World reference base for soil resources 2014 : international soil classification system for naming soils and creating legends for soil maps. FAO.

GITHAE E.W., GACHENE C.K.K., NJOKA J.T., OMONDI S.F. (2013) Nitrogen Fixation by Natural Populations of Acacia Senegal in the Drylands of Kenya Using 15N Natural Abundance. Arid L. Res. Manag., 27: 327–336.https://doi.org/10.1080/15324982.2013.784377.

GOBAT J.M., ARAGNO M., MATTHEY W. (2003) Le sol vivant : bases de pédologie, biologie des sols. Presses polytechniques et universitaires romandes.

GRIEL A.E., EISSENSTAT B., JUTURU V., HSIEH G., KRIS-ETHERTON P.M. (2004). Improved Diet Quality with Peanut Consumption. J. Am. Coll. Nutr. 23, 660–668.

GUERRIEN MARC. (2003). L’intérêt de l’analyse en composantes principales (ACP) pour la recherche en sciences sociales. http://journals.openedition.org/cal 181–192. https://doi.org/10.4000/CAL.7364.

HACHIM K.N., (2020). Effet des rhizobia et des champignons mycorhiziens sur la croissance, le rendement et la qualité nutritionnelle de deux variétés d ’ arachides ( Arachis hypogaea L .) cultivées

HAMASSELBE A., (2008). La revalorisation de la filière arachide dans la zone soudano-sahélienne du Nord Cameroun.

HAMIDOU F., HAROU A., ACHIROU B., HALILOU O., BAKASSO Y., (2018). Fixation de l’azote chez l’arachide et le niébé en conditions de sécheresse pour l’amélioration de la productivité au Sahel. TROPICULTURA 36, 63–79.

HARMAND J., NTOUPKA M., MATHIEU B., NJITI C.F., TAPSOU J.-M., BOIS J.C., THALER P., PELTIER R., (2012). Gum arabic production in Acacia senegal plantations in the Sudanian zone of Cameroon: Effects of climate, soil, tapping date and tree provenance. Bois Forets Des Trop.

HEANES D.L. (2008). Determination of total organic‐C in soils by an improved chromic acid digestion and spectrophotometric procedure. http://dx.doi.org/10.1080/00103628409367551. 15, 1191–1213.

HUBERT B. (2010) L’agronomie, science de l’agriculture Mouv. Soc. - Mouv. SOC 233, 143–157. https://doi.org/ 10.2307/40959669.

INGRAM J.S.I., ANDERSON J.M. (1993). Tropical soil biology and fertility: a handbook of methods. CAB International.

INS - Institut National de Statistiques (2017) Annuai-re_statistique_du_Cameroun_2017.

IUSS Working Group WRB. 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.

FORESTIER J. (1960). Fertilité des sols des caféières en république centrafricaine.

JEAN-LUC J., GUILHEM B., ARY B., CHRISTIAN F., DANIEL T., FOLKERT VAN OORT. (2022). Capacité d’échange cationique du sol. Les Mots l’agronomie.

OGNALAGA M., ODJOGUI P.I.O., LEKAMBOU J.M., POLIGUI R.N. (2016). Effet des écumes de canne à sucre, de la poudre et du compost à base de Chromolaena odorata (L.) King R.M. & H.E. Rob sur la croissance de l’oseille de Guinée (Hibiscus sabdariffa L.). Int. J. Biol. Chem. Sci. 9, 2507. https://doi.org/10.4314/ijbcs.v9i5.22.

OLINA J.-P., M’BIANDOUN M., EKORONG J.A., ASFOM P., 2008. Evolution de la fertilité des sols dans un système cotonnier-céréales au Nord Cameroun : diagnostic et perspectives, TROPICULTURA.

ONDO J.A., (2011). Vulnérabilité des sols maraîchers du Gabon (région de Libreville) : acidification et mobilité des éléments métalliques Effects of agricultural practices on properties and metal content in urban garden soils in a tropical metropolitan area View project Metal Accumulation in Amaranthus cruenrus Cultivated on Different Systems of Tropical Urban Gardens View project. https://doi.org/10.13140/RG.2.1.4841.2882.

PALLO F., THIOMBIANO L. (1989). Les sols ferrugineux tropicaux lessivés à concrétions du Burkina Faso : caractéristiques et contraintes pour l’utilisation agricole.

PARTEY S.T., QUASHIE-SAM S.J., THEVATHASAN N. V., GORDON A.M. (2011). Decomposition and nutrient release patterns of the leaf biomass of the wild sunflower (Tithonia diversifolia): a comparative study with four leguminous agroforestry species. Agrofor. Syst. 81, 123–134. https://doi.org/10.1007/S10457-010-9360-5.

PIERI C., CHRISTIAN J. M. G. (1992). Fertility of Soils: A Future for Farming in the West African Savannah. Springer Series in Physical Environment 10. https://doi.org/10.1007/978-3-642-84320-4.

POGGIO L., DESOUSA L.M., BATJES N.H., HEUVE-LINK G.B.M., KEMPEN B., RIBEIRO,E., ROSSITER D (2021) Soilgrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil, 7:217-240. https://doi.org/10.5194/soil-7-217-2021

PRASAD P.V. V, KAKANI V.G., UPADHYAYA H.D. (2010). Growth and production of groundnut.

QUANTIN, P. (1992) Les sols de l’archipel volcanique des Nouvelles-Hébrides (VANUATU). Etude de la pédogenèse initiale en milieu tropical. Strasbourg .

QUEMADA M., CABRERA M.L. (1995). CERES-N Model Predictions of Nitrogen Mineralized from Cover Crop Residues. Soil Sci. Soc. Am. J. 59, 1059–1065. https://doi.org/10.2136/sssaj1995.03615995005900040015x.

RHOADES J.D., MILLER R.M., KEENEY D.R. (1982). Soil Testing., Methods of Soil Analysis., Part 2, 2nd Edition. ed, Soc. Agron, Madison.

ROLAND M. (1986). L’expérience de L’ORSTOM dans le domaine de la fertilité et de l’exploitation des sols tropicaux.

ROUSE J.W., HAAS R.H., SCHELL J.A., DEERING D.W. (1974). Monitoring Vegetation Systems in the Great Plains with ERTS. 3rd , 1:48-62. Earth Resour. Technol. Satell. URL https://www.scirp.org/reference/References Papers.aspx.

SAGHAIESH S.P., SOURI M.K., MOGHADDAM M.H.Y. (2019) Characterization of nutrients uptake and enzymes activity in Khatouni melon (Cucumis melo var. inodorus) seedlings under different concentrations of nitrogen, potassium and phosphorus of nutrient solution. Journal Plant Nutrition 42: 178–185. https://doi.org/10. 1080/01904167.2018.1551491

SCHILLING R. (1991) L’arachide dans les zones de savanes du Cameroun-Nord.

SCHWOERER P. (1965) Carte Géologique de Reconnaissance à L’Echelle 1/500000 Notice Explicative sur la Carte Garoua-Est. Dir. des Mines la Géologie du Cameroun. Yaoundé.

SDN 30 (2020) Stratégie Nationale de Développement 2020-2030.

SERAPHIN B., BOUROU S., ISSA A., NOE W. (2015) Évaluation agronomique de cinq cultivars d’arachide (Arachis hypogeae L.) introduits dans la région du Nord Cameroun. J. Appl. Biosci. 89: 8311. https://doi. org/ 10.4314/jab.v89i1.5

SOURI M.K., NAIJI M.R., KIANMEHR M.H. (2019) Nitrogen release dynamics of a slow release urea pellet and its effect on growth, yield, and nutrient uptake of sweet basil (Ocimum basilicum L.). J. Plant Nutr. 42:604–614. https://doi.org/10.1080/01904167.2019.1568460

SYS C., VAN R.E., BEERNAERT F. (1993) Land Evaluation.

TEKULU K., TAYE G., ASSEFA D. (2020) Effect of starter nitrogen and phosphorus fertilizer rates on yield and yield components, grain protein content of groundnut (Arachis Hypogaea L.) and residual soil nitrogen content in a semiarid north Ethiopia. Heliyon 6. https://doi. org/10.1016/j.heliyon.2020.e05101.

TEMATIO P., NYAMA A.B., KENGNI L., BITOM D., (2001) Influence de la mise en culture sur la fertilité des sols en région forestière tropicale humide du Sud Cameroun.

TREMBLAY-BOEUF, V. (1995) Effets des contraintes mécaniques sur l’exsudation racinaire du maïs. http://www.theses.fr

TSOZUE D., NGHONDA J.P., BASGA S..D., TEMATIO P. (2018) Changes in soil properties and soil organic carbon stocks along an elevation gradient at Mount Bamboutos, Central Africa of rainfall variability on crop cultivation calendar in western Highlands in Cameroon View project Soil fertility and capability classification in Cameroon View project Changes in soil properties and soil organic carbon stocks along an elevation gradient at Mount Bambouto, Central Africa. Catena 175, 251–262. https://doi.org/10.1016/j.catena.2018.12.028175.

TURAN İ.D., DENGIZ O., ÖZKAN B. (2019) Spatial assessment and mapping of soil quality index for desertification in the semi-arid terrestrial ecosystem using MCDM in interval type-2 fuzzy environment. Comput. Electron. Agric. 164, 104933. https://doi.org/10.1016/ J.COMPAG.2019.104933.

VAN OORT F., PARADELO R., BAIZE D., CHENU C., DELARUE G., GUÉRIN A., PROIX N. (2022) Can long-term fertilization accelerate pedogenesis Depicting soil processes boosted by annual NPK-inputs since 1928 on bare loess Luvisol (INRAE-Versailles). Geoderma 416. https://doi.org/10.1016/J.GEODERMA.2022.115808.

VEERAMANI P., SUBRAHMANIYAN K. (2011) Nutrient management for sustainable groundnut producti-vity in India- a review. International Journal of Engineering Science Technology. 3:8138–8153.

YAKUBU H., KWARI J., SANDABE M. (2010) Effect of Phosphorus Fertilizer on Nitrogen Fixation by Some Grain Legume Varieties in Sudano – Sahelian Zone of North Eastern Nigeria. Niger. J. Basic Appl. Sci. 18:19–26. https://doi.org/10.4314/njbas.v18i1.56837.

YEMEFACK M., JETTEN V.G., ROSSITER D.G. (2006). Developing a minimum data set for characterizing soil dynamics in shifting cultivation systems. Soil Tillage Res. 86:84–98. https://doi.org/10.1016/J.STILL.2005. 02.017.

ZHANG H., SCHRODER J.L., FUHRMAN J.K., BASTA N.T., STORM D.E., PAYTON M.E. (2005) Path and Multiple Regression Analyses of Phosphorus Sorption Capacity Soil Science Soc. Am. J. 69:96. https://doi.org/10.2136/sssaj2005.0096dup

Downloads

Published

2024-11-27

How to Cite

Teguia Kamdem, G. A., Tueche, J. R., Temdjim, R., Tatanah Nanganoa, L., Djakba Basga, S., Nguemezi, C., & Tematio, P. (2025). Quality and fertility status of soils in the groundnuts (Arachis hypogaea L.) production basin of Ngong, North Cameroon. EQA - International Journal of Environmental Quality, 66, 1–17. https://doi.org/10.6092/issn.2281-4485/20147

Issue

Section

Articles