Groundwater storage variability in West Africa using gravity recovery and climate experiment (GRACE) and global land data assimilation system (GLDAS) data
DOI:
https://doi.org/10.6092/issn.2281-4485/20167Keywords:
GRACE, GLDAS, Gravity, Recovery, Climate, Experiment, AssimilationAbstract
The study integrates Gravity Recovery and climate Experiment (GRACE) satellite data which provides Terrestrial Water Storage with Global Land Data Assimilation System (GLDAS) which provide the hydrological components of surface water and soil moisture and investigated groundwater storage variability in West Africa Between April, 2002 to March, 2024 (240) months. Groundwater storage is a critical component of hydrological circle which has a significant implication for water availability and sustainability especially in areas where surface water is scare like some parts of west Africa, however, the spatiotemporal of groundwater storage is poorly understood in west Africa. The results reveal significant variability in groundwater storage across the study area, the analyses shows that the groundwater storage is primarily influence by regional hydrological components including surface water and soil moisture as well as climatical factors (precipitation and temperature). The study also highlights the impact of climate variability on groundwater storage in West Africa. Significant correlations are observed between groundwater storage and hydrological components, indicating that changes in SW and SM play a crucial role in driving fluctuations in groundwater storage. The results provide valuable insights into the dynamics of groundwater storage in West Africa and contribute to a better understanding of the region's water resources. This information is of vital importance for water resource management, particularly in the face of ongoing climate change and increasing water demand. The study emphasizes the need for comprehensive monitoring and management strategies to ensure sustainable groundwater use in West Africa.
References
AHAMED A., KNIGHT R., ALAM S., MORPHEW M., SUSSKIND T. (2023) Remote Sensing-Based Estimates of Changes in Stored Groundwater at Local Scales: Case Study for Two Groundwater Subbasins in California’s Central Valley. Remote Sensing, 15:2100. https://doi.org/ 10.3390/rs15082100
ALI S., LIU D., FU Q., JEHANZEB M., CHEEMA M., PHAM Q.B. (2021) Improving the resolution of GRACE data for spatio-temporal groundwater storage assess-ment. Remote Sensing, 13(1): 1–30. https://doi.org/10. 3390/rs13010134
ALLEY W.M., REILLY T.E., FRANKE O.L. (1999) Sustainability of groundwater resources: US Geological Survey Circular, 1186.
BARBOSA S.A., PULLA S.T., WILLIAMS G.P., JONES N.L., MAMANE B., SANCHEZ J.L. (2022) Evaluating Groundwater Storage Change and Recharge Using GRACE Data: A Case Study of Aquifers in Niger, West Africa, 1–22. https://doi.org/10.3390/rs14071532
BONSOR H.C., SHAMSUDDUHA M., MARCHANT B.P., MacDONALD A.M., TAYLOR R.G. (2018) Seasonal and Decadal Groundwater Changes in African Sedimentary Aquifers Estimated Using GRACE Products and LSMs. Remote Sensing, 10(6):904. https://doi.org/10.3390/rs 10060904
CHAMBERS J.E., KURAS O., MELDRUM P.I., OGILVY R.D., HOLLANDS J. (2006) Electrical resistivity tomography applied to geological, hydrogeological and engineering investigations at a former waste disposal site. Geophysics, 71:B231-B239. https://nora.nerc.ac.uk/id/ eprint/594/1/Chambers_et_al_2006_Geophysics.pdf
CUTHBERT M.O., TAYLOR R.G., FAVREAU G., TODD M.C., SHAMSUDDUHA M., VILLHOLTH K.G., MacDONALD A.M., SCANLON B.R., KOTCHONI D.O.V., VOUILLAMOZ J.M. (2019) Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature, 572:230–234. https://doi.org/10. 1038/s41586-019-1441-7
CROWLEY J.W., MITROVICA J.X., BAILEY R.C., TAMISIEA M.E., DAVIS J.L. (2006) Land water storage within the Congo Basin inferred from GRACE satellite gravity data. Geophysical Research Letters, 33(19):L19402. https://doi.org/10.1029/2006GL027070
DESCROIX L. (2018) Land cover and soil properties impact on groundwater recharge in West Africa. Journal of Hydrology, 557:281-293.
FAIVRE R. (2017) Rainfall variability and groundwater in West Africa. Journal of Hydrology, 548:281-293.
FOSTER S. (2019) Aquifer management in West Africa. Hydrogeology Journal, 27(1):1-12.
GRIPPA M., KERGOAT L., FRAPPART F., ARAUD Q., BOONE A., DE ROSNAY P. (2011) Land water storage variability over West Africa estimated by Gravity Recovery and Climate Experiment (GRACE) and land surface models. Water Resources. Research., 47:W05549. https:// doi org/10.1029/2009WR008856
GRÖNWALL J., DANERT K. (2020) Regarding Groundwater and Drinking Water Access through A Human Rights Lens: Self-Supply as A Norm. Water, 12(2): 419. http://dx.doi.org/10.3390/w12020419
HASSAN A., JIN S. (2016) Water storage changes and balances in Africa observed by GRACE and hydrologic models. Geography Compass, 10(4):144-154. https://doi. org/10.1111/gec3.12257
HOUNSLOW A.W. (1995) Water Analysis: A Practical Guide to Physio-Chemical, Chemical and Microbiological Water Examination and Quality Assurance
HUBER M. (2019) Climate change impacts on surface water resources in West Africa. Climate Change, 152(3): 341-355.
IQBAL N., HOSSAIN F., LEE H., AKHTER G. (2016) Satellite gravimetric estimation of groundwater storage variations over Indus Basin in Pakistan. IEEE J. Sel. Top. Applied. Earth Obsevation. Remote Sensing., 9(8):3619-3627. https://doi.org/10.1109/JSTARS.2016.2574378
JING W., ZHANG P., ZHAO X. (2019) A comparison of different GRACE solutions in terrestrial water storage trend estimation over Tibetan Plateau, (December 2018), 1–10. https://doi.org/10.1038/s41598-018-38337-1
KOUDENOUKPO Z.C., ODOUNTAN O.H. (2023) Understanding the patterns and processes underlying water quality and pollution in West Africa River using self-organizing maps and multivariate analysis. Environmental Science Pollution Research, 30:11893-11912. https://doi. org/10.1007/s11356-022-22784-5
KOSTER R.D., DIRMEYER P.A.., GUO Z., BONAN G., CHAN E. , COX P., GORDON C.T., KANAE S., KOWALCZYK E., LAWRENCE D., LIU P., LU C.H., MALYSHEV S., McAVANEY B., MITCHELL K., MOCKO D., OKI T., OLESON K., PITMAN A., SUD Y.C., TAYLOR C.M., VERSEGHY D., VASIC R., XUE Y., YAMADA T. (2004) Regions of strong coupling between soil moisture and precipitation. Science, 305(5687):1138–1140. https://doi.org/10.1126/science.11 00217
KUMAR A., LINGARAJ T., SASHIKANTA D., ANSARI N. (2022) Impact of climate change on groundwater hydrology: a comprehensive review and current status of the Indian hydrogeology. Applied Water Science. https://doi.org/10.1007/s13201-022-01652-0
LEBEL T. (2003) Rainfall variability in West Africa: A review. Journal of Hydrology, 278(1-4):1-18.
LIU F., KANG P., ZHU H., HAN J., HUANG Y. (2021) Analysis of spatiotemporal groundwater-storage variations in China from GRACE. Water, 13(17):2378. https://doi. org/10.3390/w13172378
LONGUEVERGNE L., SCANLON B.R., WILSON C. R., CRÉTAUX J.F. (2011) GRACE hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA. Water Resources Research, 46(5):W05521. https://doi.org/10.1029/2009WR008564
LOTFATA A. (2019) Geospatial analyses of groundwater depletion and contamination: Multiscale - global, regional and local analyses. Mississipi State, Phd Thesis. https://scholarsjunction.msstate.edu/td/2418
MASOOD A., TARIQ M.A.U.R., HASHMI M.Z.U.R., WASEEM M., SARWAR M.K., ALI W., FAROOQ R., ALMAZROUI M., NG A.W.M. (2022) An Overview of Groundwater monitoring through Point-to Satellite-Based Techniques. Water, 14:565. https://doi.org/10.3390/w14 040565.
MEGHWAL R., SHAH D., MISHRA V. (2019) On the changes in groundwater storage variability in western India using GRACE and well observations. Hydrology and Earth System Sciences Discussions, 1–13. https://doi.org/10. 5194/hess-2019-377
MUHAMMED I. (2011) The effect of large-scale interannual variations in the Gulf of Guinea, University of Southampton, Faculty of Natural and Environmental Sciences School of Ocean and Earth Science, PhD Thesis P16 retrieve at http://eprints.soton.ac.uk/
NANTEZA J., DE LINAGE C.R., THOMAS B.F., FAMIGLIETTI J.S. (2016) Monitoring groundwater storage changes in complex basement aquifers: An evaluation of the GRACE satellites over East Africa. Water
Resources Research, 52(11):8551–8564. https://doi.org/ 10.1002/2016WR018846
NDEHEDEHE C.E., AGUTU N.O., OKWUASHI O., FERREIRA V.G. (2016) Spatio-temporal variability of droughts and terrestrial water storage over Lake Chad Basin using independent component analysis. Journal of Hydrology, 540:106-128.
NIASSE M. (2019) Soil and water management practices and surface water resources in West Africa. Agricultural Water Management, 221:135-144.
PALLAS P. (2018). Geology and hydrogeology of West Africa. Journal of Hydrogeology, 26(1):1-18.
PANDE S.N., SINGH A., UZOKWE V.N.E., KRAUSE P. (2021) Groundwater for Sustainable Development An assessment of groundwater recharge estimation techniques for sustainable resource management. Groundwater for Sustainable Development, 9:100218. https://doi.org/10. 1016/j.gsd.2019.100218
RODELL M., FAMIGLIETTI J.S. (2002) The potential for satellite-based monitoring of groundwater storage changes using GRACE: The High Plains aquifer. Hydrogeology Journal, 10(1): 137-141. https://doi. org/10.1007/s10040-001-0173-4
RODELL M., CHEN J., KATO H., FAMIGLIETTI J. S., NIGRO J., WILSON C. R. (2009) Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeology Journal, 15(1):159-166. https://doi. org/10.1007/s10040-006-0103-7
RODELL M., SWENSON S., FAMIGLIETTI J.S., WAHR J. (2017) Satellite-based groundwater storage depletion: Accuracy errors, and regional trends. Hydrology and Earth System Sciences, 22(4): 2117-2136. https://doi. org/10.5194/hess-22-2117-2018
SCANLON B.R., LONGUEVERGNE L., LONG D. (2012) Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resources Research, 48(4):W04520. https://doi.org/10.1029/2011WR011312
SCANLON B.R., HEALY R.W., COOK P.G.. (2002) Cho-osing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10(1):18–39. doi:10.1007/ s10040-001-0176-2.
SCANLON B.R., RATEB A., ANYAMBA A., KEBEDE S., MacDONALD A. M. (2022) Linkages between GRACE water storage, hydrologic extremes, and climate telecom-nections in major African aquifers. https://iopscience. iop.org/article/10.1088/1748-9326/ac3bfc
SENE K. (2019) Wet years and groundwater storage in West Africa. Journal of Hydrology, 527:363-374.
SHAO C., LIU Y. (2023) Analysis of groundwater storage changes and influencing factors in China based on GRACE data. Water, 15(1):23-45. https://doi.org/10.3390/w150 10023
SKASKEVYCH A., LEE J., DAVID J.L. (2020) Application of GRACE to the estimation of groundwater storage change in a data poor region: a case study of Ngadda catchment in the Lake Chad Basin., 0–2. https://doi.org/10.1002/hyp.13613
SPRINGER A., LOPEZ T., OWOR M., FRAPPART F. (2023) The Role of Space Based Observations for Ground-water Resource Monitoring over Africa Climate Hazards Group InfraRed Precipitation with Station International Centre for Global Earth Models. Surveys in Geophysics, (Vol. 44). Springer Netherlands. https://doi.org/10.1007/ s10712-022-09759-4
STRASSBERG G., SCANLON B.R., CHAMBERS D. (2009) Evaluation of groundwater storage monitoring with the GRACE satellite: Case study of the High Plains aquifer, central United States. Water Resources Research, 45(6): W06408. https://doi.org/10.1029/2008WR006892
SUN Z., LONG D., YANG W., LI X., PAN Y. (2020) Reconstruction of grace data on changes in total water storage over the global land surface and 60 basins. Water Resources Research, 56(4). https://doi.org/10.1029/2019 wr026250
SUN Z., ZHU X., PAN Y., ZHANG J. (2017) Assessing terrestrial water storage and flood potential using GRACE data in the Yangtze River Basin, China. Remote Sensing, 9(10):1011. https://doi.org/10.3390/rs9101011
TANG G., ZENG Z., LONG D., GUO X., YONG B., ZHANG W., HONG Y. (2020) Statistical and Hydrological Comparisons between TRMM and GPM Level-3 Products over a Midlatitude Basin: Is Day-1 IMERG a Good Successor for TMPA 3B42V7. Journal of Hydrome-teorology, 17(1):121-137.
THOMAS B.F., FAMIGLIETTI J.S. (2019) Identifying Climate-Induced Groundwater Depletion in GRACE Observations. Scientific Reports, 1–9. https://doi.org/10. 1038/s41598-019-40155-y
VOSS K.A., FAMIGLIETTI J. S., LO M., LINAGE C., RODELL M., SWENSON S.C. (2013) Groundwater depletion in the Middle East from GRACE with implica-tions for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resources Research, 49(2):904-914. https://doi.org/10.1002/wrcr.20078
WERTH, S.; WHITE, D.; BLISS, D.W. (2017) GRACE Detected Rise of Groundwater in the Sahelian Niger River Basin. Journal of Geophysical Resources, Solid Earth, 122:459–477.https://doi.org/10.1002/2017/JB014845
YANG, P., XIA, J., ZHAN, C., ZHANG, Y., & CHEN, J. (2017). Study on the variation of terrestrial water storage and the identification of its relationship with hydrological cycle factors in the Tarim River Basin, China. Advances in Meteorology, 5086854. https://doi.org/10.1155/2017/ 5086854
YIN W., HU L., ZHANG M., WANG J., HAN S.C. (2019) Statistical downscaling of GRACE-derived ground-water storage using ET data in the North China plain. Journal of Geophysical Research: Atmospheres, 123(11), 5973-5987. https://doi.org/10.1029/2017J D027468
YIN W., HU L., ZHENG W., JIAO J.J., HAN S.C., ZHANG M. (2020) Assessing underground water exchan-ge between regions using GRACE data. Journal of Geophysical Research: Atmospheres, 125: e2020JD032570. https://doi.org/10.1029/2020JD032570
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Muhammad Magaji Ibrahim, Muhammed Ibrahim , Muhammad Mubi Aisha
This work is licensed under a Creative Commons Attribution 4.0 International License.