Forecasting air quality index data with autoregressive integrated moving average models

Authors

  • Arie Vatresia Department of Informatics, Faculty of Engineering, University of Bengkulu
  • Ridha Nafila Department of Informatics, Faculty of Engineering, University of Bengkulu
  • Winalia Agwil Department of Information System, Faculty of Engineering, University of Bengkulu
  • Ferzha Utama Department of Statistic, Faculty of Mathematics and Natural Sciences, University of Bengkulu
  • Maryam Shehab Environmental Protection Authority (EPA), Shuwaikh, Kuwait City

DOI:

https://doi.org/10.6092/issn.2281-4485/20263

Keywords:

air pollution, Pollutants, Air Quality Index (AQI) , ARIMA, AQI Categories

Abstract

Air pollution arises from several sources, encompassing industrial, transportation, and home activities, and carries significant implica- tions for environmental health. High population mobility in a place, such as Jakarta, might exacerbate air pollution. In 2021, Jakarta, des- ignated as the Special Capital Region, had the highest population den- sity in Indonesia, with 15,978 individuals per square kilometer (km2). IQAir reports that Jakarta frequently places among the cities with the most unfavorable air quality globally.  In 2021, Jakarta was identified as the most polluted city in Indonesia, while Indonesia was placed 17th out of 118 countries for having the poorest air quality. Hence, the Jakarta Environmental Agency has formulated an Air Pollution Control Strategy till 2030 to diminish the proportion of lethal pollu- tion levels. Given the significance of air pollution’s detrimental effects on health, it is imperative to consistently regulate and oversee air pol- lution, including forecasting. This study utilizes the forecasting of the Air Quality Index (AQI) in Jakarta at air quality monitoring stations DKI1, DKI2, DKI3, DKI4, and DKI5. The Air Quality Index (AQI) data for Jakarta were obtained from the Jakarta Open Data portal spanning the years 2010 to 2021.  The ARIMA model was utilized to process this data. The generated models were assessed for error levels using the parameters Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Ab- solute Percentage Error (MAPE). This study produced a total of 25 ARIMA models to forecast the levels of air quality index (AQI) con- taminants. The levels of PM10, SO2, CO, O3, and NO2 at the five stations were determined to be highly accurate, accurate, and quite accurate, with Mean Absolute Percentage Error (MAPE) values rang- ing from 8% to 43%.

References

ABIDIN J., HASIBUAN F.A. (2019) Pengaruh dampak pencemaran udara terhadap kesehatan untuk menambah pemahaman masyarakat awam tentang bahaya dari polusi udara. Prosiding Seminar Nasional Fisika Universitas Riau IV (SNFUR-4) Pekanbaru, 7 September 2019, 4(2):3. ISBN: 978-979-792-691-5

AHMAR A.S., GURITNO S., RAHMAN A., MINGGI I., TIRO M.A., AIDID M.K., ANNAS S., SUTIKSNO D.U., AHMAR D.S., AHMAR K.H. ET AL.(2018) Modeling data containing outliers using ARIMA additive outlier (ARIMA-AO). Journal of Physics,Conference Series, 954 (1):012010

https://doi.org/10.1088/1742-6596/954/1/012010

AIR I.Q. (2023) Kualitas udara jakarta (tech. rep.). Index Quality Air. https://www.iqair.com/id/indonesia/jakarta

ALLEN D.M. (1971) Mean square error of prediction as a criterion for selecting variables. Technometrics, 13(3): 469–475. https://doi.org/10.2307/1267161

BPS - Badan Pusat Statistik. (2021) Kepadatan Penduduk DKI Jakarta (tech. rep.). Badan Pusat Statistik.

CHICCO D., WARRENS M.J., JURMAN G. (2021) The coefficient of deter- mination r-squared is more informative than smape, mae, mape, mse and rmse in regression analysis evaluation. PeerJ Computer Science, 7:e623.

DAN KEHUTANAN B.S.I.L.H. (2021) Hari ozon sedunia tahun 2021: Peran rantai pendingin di masa pandemi (tech. rep.). Kemente- rian Lingkungan Hidup dan Kehutanan.

DE MYTTENAERE A., GOLDEN B., LE GRAND B., ROSSI F. (2016) Mean absolute percentage error for re-gression models. Neurocomputing, 192:38–48.

DIMASHANTI A.R., SUGIMAN (2021) Peramalan indeks harga konsumen kota semarang menggunakan sarima berbantuan software minitab. PRISMA, Prosiding Seminar Nasional Matematika, 4:565–576.

HENI KUSDARWATI U.E., HANDOYO S. (2018). Analisis deret waktu univariat linier. John Wiley & Sons.

HOSAMANE S.N., PRASHANTH K., VIRUPAKSHI A. S. (2020) Assessment and prediction of PM10 concen-tration using ARIMA. Journal of Physics: Conference Se-ries, 1706(1):012132. https://doi.org/10.1088/1742-65 96/1706/1/012132

JADON A., PATIL A., JADON S. (2022) A comprehensive survey of regression based loss functions for time series forecasting. Machine Learning, Cornell University, pp.13. https://doi.org/10.48550/arXiv.2211.02989

JAKARTA D.L.H.D. (2020a) Laporan akhir (januari-desember) pemantauan kualitas udara dki jakarta tahun 2020 (tech. rep.). Dinas Lingkungan Hidup DKI Jakarta.

JAKARTA D.L.H.D. (2020b) Laporan inventarisasi emisi pencemar udara dki jakarta tahun 2020 (tech. rep.). Dinas Lingkungan Hidup DKI Jakarta.

KHOIRUNNISA (2023) Industri manufaktur di Jakarta alami pertumbuhan (tech. rep.). Dinas Lingkungan Hidup DKI Jakarta.

KKRI - Korlantas Kepolisian Republik Indonesia. (2022). Jumlah Kendaraan Bermo- tor Menurut Jenis Kendaraan (Unit) di Provinsi DKI Jakrta (tech. rep.). Kepolisian Republik Indonesia.

LEWIS C.D. (1982) Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Butterworth Scientific, 143 pp. ISBN 0408005599, 9780408005593

SANDHI S.I. (2019) Studi fenomenologi: Kesadaran diri (self awareness) per- okok aktif yang mempunyai anak balita dalam perilaku merokok di tempat umum di kelurahan pegulon kabupaten kendal. Jurnal Ke- bidanan Harapan Ibu Pekalongan, 6:237–243.

SENEN A., RATNASARI T. (2017) Studi peramalan be-ban ratarata jangka pendek menggunakan metoda autore-gressive integrated moving average (ARIMA). Jurnal Ilmiah Sutet, 7(2):93–101. https://doi.org/10.33322/ sutet.v7i2.84

SIMANDJUNTAK A.G. (2007) Pencemaran udara. Buletin Limbah, 11(1).

SPYROU E.D., TSOULOS I., STYLIOS C. (2022) Apply-ing and comparing LSTM and ARIMA to predict CO le-vels for a time-series measurements in a port area. Signals, 3(2):235–248. https://doi.org/10.3390/signals3020015

SYAIFULLOH M.M. (2021) Prediksi indeks standar pencemaran udara di kota surabaya berdasarkan konsentrasi gas karbon monoksida. Jambura Journal of Probability and Statistics, 2 (2):86–95.

UCAR (2024) What is air quality? (Tech. rep.). Center for Science Education. https://scied.ucar.edu/learning-zone/ air-quality/what-is-air-quality

WEI W.W. (2019) Multivariate time series analysis and applications. John Wiley & Sons. ISBN: 978-1-119-50285-2

ZHANG Y., YANG H., CUI H., CHEN Q. (2020) Com-parison of the ability of ARIMA, WNN and SVM Models for drought forecasting in the Sanjiang Plain, China. Natural Resources Research, 29(6). https://doi.org/10.100 7/s11053-019-09512-6

Downloads

Published

2024-10-22

How to Cite

Vatresia, A., Nafila, R., Agwil, W., Utama, F., & Shehab, M. (2025). Forecasting air quality index data with autoregressive integrated moving average models. EQA - International Journal of Environmental Quality, 65, 86–96. https://doi.org/10.6092/issn.2281-4485/20263

Issue

Section

Articles