The effect of biochar on enhancing soil fertility, mitigating soil salinity and promoting plant growth: a review
DOI:
https://doi.org/10.6092/issn.2281-4485/20614Keywords:
Biochar, feedstock, pyrolysis, soil salinity, plant growthAbstract
Biochar (BC) is a widely recognized soil amendment, produced by pyrolysis from different biomass, its potential is determined through pyrolysis temperature and feedstock material. Biochar produced at maximum temperatures (> 500 ℃) increased bulk density and porosity to greater levels. It is produced at minimum pyrolytic temperature (< 500 ℃) had more influence on bacterial diversity, and the type of organic resources can affect soil bulk density. Application of BC to soil can enhance its quality and reduce the effects of salt, drought, and contamination as well as climate change. The addition of biochar to soil improves its physical and chemical properties, like porosity, moisture content, and water-holding capacity. BC, can enhance the fertility of soil, improve the retention of nutrients, and decrease the salinity of the soil, all of which can increase crop yields. Moreover, biochar could capture C in the soil and is an effective method to mitigate climate change, improve soil management, and promote agricultural sustainability in Semi-arid and Arid areas.
References
ABBAS T., RIZWAN M., ALI S., ZIA-UR REHMAN M, QAYYUM M.F., ABBAS F., HANNAN F., RINKLEBE J., OK Y.S. (2017) Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicol. Environ. Saf, 140: 37–47. https://doi.org/10.1016/j.ecoenv.2017.02.028
AKHTAR S.S., ANDERSEN M.N., LIU F. (2015b) Biochar mitigates salinity stress in potato. J. Agronomy Crop Sci, 201(5): 368–378. https://doi.org/10.1111/jac.12132
AKHTAR S.S., ANDERSEN M.N., LIU F.( 2015a) Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agric. Water Manag, 158: P. 61–68. https://doi.org/10.1016 /j.agwat.2015.04.010
AKHTAR S.S., LI G., ANDERSEN M.N., LIU F. (2014) Biochar enhances yield and quality of tomato under reduced irrigation. Agric. Water Manag, 138. 37–44. https://doi.org/10.1016/j.agwat.2014.02.016
ALI S., RIZWAN M., QAYYUM M.F., OK Y.S., IBRAHIM M., RIAZ M., ARIF M S., HAFEEZ F., AL-WABEL M. I., SHAHZAD A.N. (2017) Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environ. Sci. Pollut. Res, 3: 1–13. https://doi.org/ 10.1007/s11356-017-8904-x
AL-WABEL M.I., AL-OMRAN A., EL-NAGGAR A.H., NADEEM M., USMAN A.R.A. (2013) Bioresource technology pyrolysis temperature induced changes in cha-racteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131: 374–379. https://doi.org/10.1016/j.biortech.2012.12.165
AMINI S., GHADIRI H., CHEN C., MARSCHNER P. (2016) Salt-affected soils, reclamation, carbon dynamics, and biochar: a review. J. Soils Sediments, 16: 939–953. https://doi.org/10.1007/s11368-015-1293-1
AN X., LIU Q., PAN F., YAO Y., LUO X., CHEN C., LIU T., ZOU L., WANG W., WANG J. (2023) Research Advances in the Impacts of Biochar on the Physicochemical Properties and Microbial Communities of Saline Soils. Sustainability, 15: 14439. https://doi.org/10.3390/su151914439
BARZEGAR A.R., YOUSEFI A., DARYASHENAS A. (2002) The effect of addition of different amounts and types of organic materials on soil physical properties and yield of wheat. Plant and Soil, 247: 295–301. https://doi.org/10.1023/A:1021561628045
BHADURI D., SAHA A., DESAI D., MEENA H.N. (2016) Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study. Chemosphere, 148: 86–98. https://doi.org/10.1016/j.chemosphere.2015.12.130
BIEDERMAN, L.A., HARPOLE, W.S. (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy, 5: 202-214. https://doi.org/10.1111/gcbb.12037.
CHAGANTI V.N., CROHN D.M., ŠIMŮNEK J. (2015) Leaching and reclamation of a biochar and compost amended saline–sodic soil with moderate SAR reclaimed water. Agric. Water Manag, 158: 255–265. https://doi.org/10.1016/j.agwat.2015.05.016
DI LONARDO S., BARONTI S., VACCARI F.P., ALBANESE L., BATTISTA P., MIGLIETTA F., BACCI L. (2017) Biochar-based nursery substrates: the effect of peat substitution on reduced salinity. Urban For. Urban Green, 23: 27–34. DOI: 10.1016/j.ufug.2017.02.007
DING Y., LIU Y., LIU S., LI Z., TAN X., HUANG X., ZENG G., ZHOU L., ZHENG B. (2016) Biochar to improve soil fertility. A review. Agronomy for sustainable development, 36 (2): 36. https://doi.org/10.1007/s13593-016-0372-z
DRAKE J.A., CAVAGNARO T.R., CUNNINGHAM S.C., JACKSON W.R., PATTI A.F. (2016) Does biochar improve establishment of tree seedlings in saline sodic soils?. Land Degrad. Dev, 27: 52–59. https://doi.org/10.1002/ldr.2374
EL-NAGGAR A., EL-NAGGAR A.H., SHAHEEN S.M., SARKAR B., CHANG S.X., TSANG D.C.W., RINKLEBE J., SIK Y. (2019) Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk : A review. Journal of Environmental Management, 241: 458–467. https://doi.or/10.1016/j.jenvman.2019.02.044.
EYNARD A., LAL R., WIEBE K. (2005) Crop response in salt-affected soils. Journal of Sustainable Agriculture, 27 (1): 5–50. https://doi.org/10.1300/J064v27n01_03
FAGERIA N.K., GHEYI H.R., MOREIRA A. (2011) Nutrient bioavailability in salt affected soils. J. Plant Nutr, 34: 945–962. https://doi.org/10.1080/01904167.2011.555578
FARHANGI-ABRIZ S., TORABIAN S. (2018) Biochar improved nodulation and nitrogen metabolism of soybean under salt stress. Symbiosis, 74: 215–223. https://doi.org/10.1007/s13199-017-0509-0
GHAFOOR A., QADIR M., MURTAZA G. (2004) Salt-affected Soils Principles of management. Pakistan, Faisalabad : Al-lied Book Centre. (ISBN 969-547). 328 p
GUL S., WHALEN J.K., THOMAS B.W., SACHDEVA V., DENG H. (2015) Physico-chemical properties and microbial responses in biochar-amended soils Mechanisms and future directions. Agriculture, Ecosystems and Environment. 206: 46–59. https://doi.org/10.1016/j.agee.2015.03.015
GUNARATHNE V., SENADEERA A., GUNARA-THNE U., BISWAS J.K., ALMAROAI Y.A., VITHA-NAGE M. (2020) Potential of biochar and organic amendments for reclamation of coastal acidic-salt affected soil. Biochar, 2 (1): 107–120. https://doi.org/10.1007/s42773-020-00036-4
HAMMER E.C., BALOGH-BRUNSTAD Z., JAKOB-SEN I., OLSSON P.A., STIPP S.L., RILLIG M.C. (2014) A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol. Biochem, 77: 252–260. https://doi.org/10.1016/j.soilbio.2014.06.012
HARDIE M., CLOTHIER B., BOUND S., OLIVER G., CLOSE D. (2014) Does biochar influence soil physical properties and soil water availability ?. Plant and Soil, 376: 347–361. https://doi.org/10.1007/s11104-013-1980-x
HINSINGER P., PLASSARD C., TANG C., JAILLARD B. (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil, 248: 43–59. https://doi.org/10.1023/A:1022371130939
HUNG C.Y., HUSSAIN N., HUSK B.R, AND WHALEN J.K. (2022) Ammonia volatilization from manure mixed with biochar. Canadian Journal of Soil Science, 102(1): 177-186. https://doi.org/10.1139/cjss-2021-0029
JAAFAR N.M., CLODE P.L., ABBOTT L.K. (2014) Microscopy observations of habitable space in biochar for colonization by fungal hyphae from soil. Journal of Integrative Agriculture, 13 (3): 483–490. https://doi.org/10.1016/S2095-3119(13)60703-0
JALALI M., RANJBAR F. (2009) Effects of sodic water on soil sodicity and nutrient leaching in poultry and sheep manure amended soils. Geoderma, 153:(1-2), 194–204. https://doi.org /10.1016/j.geoderma.2009.08.004
KIM H.S., KIM K.R., YANG J.E., OK Y.S., OWENS G., NEHLS T., WESSOLEK G., KIM K.H. (2016) Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere, 142: 153–159. https://doi.org/10.1016/j.chemosphere.2015.06.041
LAKHDAR A., RABHI M., GHNAYA T., MONTEMURRO F., JEDIDI N., ABDELLY C. (2009) Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials, 171 (1–3): 29–37. https://doi.org/ 10.1016/j.jhazmat.2009.05.132
LASHARI M.S., LIU Y., LI L., PAN W., FU J., PAN G., ZHENG J., ZHENG J., ZHANG X., YU X. (2013) Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain . Field Crop Res, 144. 113–118. https://doi.org/10.1016/j.fcr.2012.11.015
LASHARI M.S., YE Y., JI H., LI L., KIBUE G.W., LU H., ZHENG J., PAN G. (2015) Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment. J. Sci. Food Agric, 95: 1321–1327. https://doi.org/10.1002/jsfa.6825
LEBRUN M., ALIDOU ARZIKA I., MIARD F., NANDILLON R., BAYÇU G., BOURGERIE S., MORABITO D. (2020) Effect of fertilization of a biochar and compost amended technosol: Consequence on Ailanthus altissima growth and As‐ and Pb‐specific root sorption. Soil Use and Management. https://doi.org/10.1111/sum.12646
LI S., CHAN C.Y., SHARBATMALEKI M., TREJO H., DELAGAH S. ( 2020) Engineered biochar production and its potential benefits in a closed-loop water-reuse agriculture system. Water (Switzerland), 12 (10): 2847. https://doi.org/10.3390/w12102847
LIN X.F., ZHANG J., YIN Y.S. (2009) Study on fractal characteristics of biomass chars. Biomass Chem. Eng, 43: 10–12. https://www.aeeisp.com/swzhxgc/en/article/id/45
LIN X.W., XIE Z.B., ZHENG J.Y., LIU Q., BEI Q.C., ZHU J.G. (2015) Effects of biochar application on greenhouse gas emissions, carbon sequestration and crop growth in coastal saline soil. Eur. J. Soil Sci, 66: 329–338. https://doi.org/10.1111/ejss.12225
LIU X., QU J., LI L., ZHANG A., JUFENG Z., ZHENG J., PAN G. (2012) Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies? A cross site field experiment from South China. Ecol Eng, 42:168–173. https://doi.org/10.1016/j.ecoleng.2012.01.016
LIU Z., DUGAN B., MASIELLO C.A., GONNERMANN H.M. ( 2017) Biochar particle size, shape, and porosity act together to influence soil water properties. Plos One, 12 (6): e0179079. https://doi.org/10.13 71/journal.pone.0179079
LUO X., LIU G., XIA Y., CHEN L., JIANG Z., ZHENG H., WANG Z. ( 2017) Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. J. Soils Sediments, 17: 780–789. https://doi.org/10.1007/s11368-016-1361-1
MAJIDI.A.H. (2022) Effect of different biochar concentration on the growth of three agricultural plants in Afghanistan. Journal of Wastes and Biomass Management, 4(1): 01-07. http://doi.org/10.26480/jwbm.01.2022.01.07
MARKS N., ALEXANDER E. (2013) Biochar effects on soil quality as evaluated by physical, chemical, and biological parameters : A dissertation. – Barcelona : Universitat Autònoma de Barcelona, p. 262.
MUHAMMAD N., DAI Z., XIAO K., MENG J., BROOKES P.C., LIU X., WANG H., WU J., XU J. (2014) Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties. Geoderma, 226:(227) 270–278. https://doi.org/10. 1016/j.geoderma.2014.01.023
NORTON J.M., FIRESTONE M. K. (1996) dynamics in the rhizosphere of Pinus ponderosa seedlings. Soil Biol. Biochem, 28: 351–362. https://doi.org/10.1016/0038-0717(95)00155-7
OMARI S., MAJIDI A.H., AMIRI A.F. (2023) Effect of Nitrogen and Plant Spacing on The Growth and Yield of Onion (Allium Cepa L.) in Afghanistan. Plant Physiology and Soil Chemistry, 3(2): 75-82. http://doi.org/10.26480/ppsc.02.2023.75.82
PARK S., CHENG Z., YANG H., MORRIS E.E., SUTHERLAND M., GARDENER B.B.M., GREWAL P.S. (2010) Differences in soil chemical properties with distance to roads and age of development in urban areas. Urban Ecosystems, 13: 483–497. https://doi.org/10.1007/s11252-010-0130-y
QADIR M., SCHUBERT S. (2002) Degradation processes and nutrient constraints in sodic soils. Land Degrad, 13: 275–294. https://doi.org/10.1002/ldr.504
RAJARAM G., ERBACH D.C. ( 1999) Effect of wetting and drying on soil physical properties. Journal of Terramechanics, 36 (1): 39–49. https://doi.org/10.1016/S0022-4898(98)00030-5
RAJKOVICH S., ENDERS A., HANLEY K., HYLAND C., ZIMMERMAN A.R., LEHMANN J. (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils, 48: 271–284. http://dx.doi.org/10.1007/s00374-011-0624-7
RENGASAMY P. (2010) Soil processes affecting crop production in salt-affected soils. Funct. Plant Biol, 37: 613–620. https://doi.org/10.1071/FP09249
RENGASAMY P., SUMNER M. ( 1998) Processes Involved in Sodic Behavior. New York, USA : Oxford University Press.
RENGASAMY P., OLSSON K.A. (1991) Sodicity and soil structure. Soil Res, 29: 935–952. http://dx.doi.org/10.1071/SR9910935
RIZWAN M., ALI S., ABBAS T., ADREES M., ZIA-UR-REHMAN M., IBRAHIM M., ABBAS F., QAYYUM M.F., NAWAZ R. (2018) Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. J. Environ. Manag, 206: 676–683. https://doi.org/10.1016/j.jenvman.2017.10.035
SAIFULLAH D.S., NAEEM A., RENGEL Z., NAIDU R. (2018) Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Science of the Total Environment, 625: 320–335. https://doi.org/10.1016/j.scitotenv.2017.12.257
SANTI, N., DEWI, R.K., WATANABE, S., SUGANUMA, Y., IIKUBO, T., KOMATSUZAKI, M. (2024) Enhancing Sustainable Waste Management Using Biochar: Mitigating the Inhibitory of Food Waste Compost from Methane Fermentation Residue on Komatsuna (Brassica rapa) Yield. Sustainability, 16: 2570. https://doi.org/10.3390/su16062570
SIKDER S., JOARDAR J.C. (2019) Biochar production from poultry litter as management approach and effects on plant growth. Int J Recycl Org Waste Agricult 8: 47–58. https://doi.org/10.1007/s40093-018-0227-5
SINGH H., NORTHUP B.K., RICE C.W., PRASAD P.V.V. (2022) Biochar applications influence soil physical and chemical properties , microbial diversity , and crop productivity : a meta analysis. Biochar, 1–17. https://doi.org/10.1007/s42773-022-00138-1
SINGH H., NORTHUP B.K., RICE C.W. (2022) Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar 4: 8 https://doi.org/10.1007/s42773-022-00138-1
SMITH P. (2016) Soil carbon sequestration and biochar as negative emission technologies. Glob Change Biol, 22: 1315-1324. https://doi.org/10.1111/gcb.13178
SPARREVIK M., FIELD J.L., MARTINSEN V., BREEDVELD G.D., CORNELISSEN, G. (2013) Life Cycle Assessment to Evaluate the Environmental Impact of Biochar Implementation in Conservation Agriculture in Zambia. Environmental Science & Technology, 47(3):1206–1215. https://doi.org/10.1021/es302720k
SUN H., LU H., CHU L., SHAO H., SHI W. ( 2017) Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sci. Total Environ, 575: 820–825. https://doi 10.1016/j.scitotenv.2016.09.137
TAN Z., LIN C., JI X., RAINEY T. (2017) Returning biochar to fields: a review. Applied Soil Ecology, 116: 1–11. https://doi.org/10.1016/j.apsoil.2017.03.017
THOMAS S.C., FRYE S., GALE N., GARMON M., LAUNCHBURY R., MACHADO N., MELAMED S., MURRAY J., PETROFF A., WINSBOROUGH C. (2013) Biochar mitigates negative effects of salt additions on two herbaceous plant species. J. Environ. Manag, 129: 62–68. https://doi.org/10.1016/j.jenvman.2013.05.057
THÚY N., CHI L., ANTO S., SHAN T., KUMAR S.S., SHANMUGAM S., SAMUEL M.S., MATHIMANI T., BRINDHADEV K., PUGAZHENDHI A. (2020) A review on biochar production techniques and biochar based catalyst for biofuel production from algae. Fuel, 287: 119411. https://doi.org/10.1016 /j.fuel.2020.119411
TRIPPE K.M., GRIFFITH S.M., BANOWETZ G.M. AND WHITAKER G.W. (2015) Changes in Soil Chemistry following Wood and Grass Biochar Amendments to an Acidic Agricultural Production Soil. Agronomy Journal, 107: 1440-1446. https://doi.org/10.2134/agronj14.0593
TRIPTI KUMAR A., USMANI Z., KUMAR V., ANSHUMALI. ( 2017) Biochar and fly ash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant. Journal of Environmental Management, 190: 20–27. https://doi.org/10.1016/j.jenvman.2016.11.060
WONG V.N.L., GREENE R.S.B., DALAL R.C., MURPHY B.W. (2010) Soil carbon dynamics in saline and sodic soils: a review. Soil Use Manage, 26: 2–11. https://doi.org/10.1111/j.1475-2743.2009.00251.x
YAASHIKAAA P.R., KUMAR P., SENTHIL, VARJANI S.J., SARAVANAN A. (2019) Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants. Bioresour. Technol, 292: 122030. https://doi.org/10.1016/j.biortech.2019.122030
YANG A., AKHTAR S.S., LI L., FU Q., LI Q., NAEEM M.A., HE X., ZHANG Z., JACOBSEN S.E. (2020) Biochar mitigates combined effects of drought and salinity stress in Quinoa. Agronomy, 10 (6): 912. https://doi.org/10.3390/agronomy10060912
YUAN J.H., XU R.K. (2011a ) The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manage, 27: 110–115. https://doi.org/10.1111/j.1475-2743.2010.00317.x
YUAN J.H., XU R.K. (2011b) Progress of the research on the properties of biochars and their influence on soil environmental functions. Ecol. Environ. Sci, 20: 779–785. https://www.cjae.net/EN/10.13287/j.1001-9332.202007. 034
YUE Y., GUO W.N., LIN Q.M., LI G.T., ZHAO X.R. (2016) Improving salt leaching in a simu- lated saline soil column by three biochars derived from rice straw (Oryza sativa L.), sunflower straw (Helianthus annuus), and cow manure. J. Soil Water Conserv, 71: 467–475. https://doi.org/10.2489/jswc.71.6.467
ZHANG J., BAI Z., HUANG J., HUSSAIN S., ZHAO F., ZHU C., ZHU L., CAO X., JIN Q. (2019) Biochar alleviated the salt stress of induced saline paddy soil and improved the biochemical characteristics of rice seedlings differing in salt tolerance. Soil and Tillage Research, 195: 104372. https://doi.org/10.3390/agronomy12020409
ZHENG H., WANG X., CHEN L., WANG Z., XIA Y., ZHANG Y., WANG H., LUO X., XING B. (2017) Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation. Plant Cell Environ, 41: 517–532. https://doi.org/ 10.1111/pce.12944
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Abdul Hallim Majidi

This work is licensed under a Creative Commons Attribution 4.0 International License.