Pedological approach on sealed soils: impacts of covering materials on soil properties in urban and peri-urban areas
DOI:
https://doi.org/10.6092/issn.2281-4485/21401Keywords:
Paved Soil, Pedogenetic Processes, Anthropogenic factor, Impervious coverAbstract
Land consumption represents a growing environmental threat, driven by rapid urbanization and the increasing demand for space for infrastructure and housing. Among its various manifestations, soil sealing is particularly detrimental, contributing to soil degradation and the interruption of critical ecosystem services, thus highlighting the urgent need for the implementation of sustainable land management policies. De-sealing practices, in parti-cular, have gained significant traction in recent years, although preliminary studies are mandatory to evaluate the soil conditions beneath and guide the planning of necessary interventions. Therefore, this study aimed to exami-ne the pedological properties (morphological, physical, chemical, and mineralogical) of sealed soils in urban (Vallemiano neighborhood) and peri-urban (Torrette neighborhood) areas, focusing on the impact of the cove-ring materials' characteristics and uniformity on these traits. Overall, soils at both sites exhibited problems rela-ted to soil compaction, exacerbated by fine-texture classes, low nutrient levels (particularly total organic carbon and nitrogen), and the contribution of allochthonous materials. However, variations in the characteristics and uniformity of the covering materials affected the soil properties. At Torrette, the homogeneous and entirely impermeable asphalt covering prevented the interactions between the atmosphere, hydrosphere, and pedosphe-re, leading to severe anoxic conditions, mainly in the surface soil horizons. In contrast, Vallemiano presented a degraded and heterogeneous soil surface cover. Thus, water infiltration and/or capillary rise, combined with the calcareous nature of the allochthonous material, promoted the translocation and accumulation of secondary carbonates.
References
BINNER H., WOJDA P., YUNTA F., BREURE T., SCHIEVANO A., MASSARO E., JONES A., NEWELL J., PARADELO R., POPESCU B.I., BALTRĖNAITĖ-GEDIENĖ E., TUTTOLOMONDO T., IACUZZI N., BONDI G., ZUPANC V., MAMY L., PACINI, L., DE FEUDIS M., CARDELLI V., KICIŃSKA A., STOCK, M.J, LIU, H., DEMIRAJ E., SCHILLACI, C., (2024). A systematic review and characterization of the major and most studied urban soil threats in the European Union. Water, Air and Soil Pollution, 235(8): 494. https://doi.org/10.1007/s11270-024-07288-x
BRECCIAROLI G., COCCO S., AGNELLI A., COUR-CHESNE F., CORTI G. (2012) From rainfall to throughfall in a maritime vineyard. Science of the Total Environment, 438: 174–188. https://doi.org/10.1016/j.scitotenv.2012.08.044
Brindley G.W., Brown G., (1980). Crystal Structure of Clay Minerals and their X-ray Identification. Miner. Soc. Monogr. n.9. London, UK. ISBN-10:0903056089
BURGOS HERNANDEZ T.D., DEISS L., SLATER B.K., DEMYAN M.S., SHAFFER J.M. (2021) High-throughput assessment of soil carbonate minerals in urban environments. Geoderma 382: 114778.https://doi.org/10.1016/j.geoderma.2020.114778
Camponi L., Cardelli V., Cocco S., Serrani D., Salvucci A., Cutini A., Agnelli A., Fabbio G., Bertini G., Roggero P.P., Corti G., (2022). Effect of coppice conversion into high forest on soil organic C and nutrients stock in a Turkey oak (Quercus cerris L.) forest in Italy. Journal of Environmental Management, 312. https://doi.org/10.1016/j. jenvman.2022.114935
CAMPONI L., CARDELLI V., COCCO S., SERRANI D., SALVUCCI A., CUTINI A., AGNELLI A., FABBIO G., BERTINI G., ROGGERO P.P., WEINDORF D.C., CORTI G. (2023). Holm oak (Quercus ilex L.) cover: A key soil-forming force in controlling C and nutrient stocks in long-time coppice-managed forests. Journal of Environmental Management, 330, 117181. https://doi-org.ezproxy.cad.univpm.it/10.1016/j.jenvman.2022.117181
CHEMERI L., TAUSSI M., FRONZI D., CABASSI J., MAZZOLI S., TAZIOLI A., RENZULLI A., VASELLI O., 2025. Groundwater hydrogeochemical changes predating and following the November 9, 2022 Mw 5.5 Adriatic offshore earthquake (Central Italy). Journal of Hydrology, 653: 132792. https://doi.org/10.1016/j.jhydrol.2025.132792
CLIMATE-DATA (2025). https://en.climate-data.org (accessed 04 February 2025)
COLSAET A., LAURANS Y., LEVREL H. (2018) What drives land take and urban land expansion? A systematic review. Land Use Policy, 79, 339-349 https://doi.org/10.1016/j.landusepol.2018.08.017
CORNU S., KELLER C., BÉCHET B., DELOLME C., SCHWARTZ C., VIDAL-BEAUDET L. (2021). Pedo-logical characteristics of artificialized soils: A snapshot. Geoderma, 401:115321. https://doi.org/10.1016/j.geoderma.2021.115321
DA-GANG Y. U. A. N., ZHANG G. L., ZI-TONG G. O.N.G. (2008) Numerical approaches to identification of characteristic soil layers in an urban environment. Pedo-sphere, 18(3):335-343. https://doi.org/10.1016/S1002-0160(08)60023-5
DAY P.R. (1965)Particle fractionation and particle size anaysis. In: Black C.A., Evans D.D., Ensminger L.E., White J.L., Clark F.E. (Eds.), Methods of Soil Analysis. American Society of Agronomy, Madison, pp. 545-567. https://doi.org/10.2134/agronmonogr9.1.c43
DIXON J.B., SCHULZE D.G. (2002) Soil Mineralogy with Environmental Applications. In: SSSA Book Series, vol. 7. Soil Science Society of America, Madison, WI. ISBN 0891188398
ESPEJO J.M.R., FAUST D., GRANADOS M.A.N., ZIELHOFER C., 2008. Accumulation of secondary carbo-nate evidence by ascending capillary in Mediterranean argillic horizons (Cordoba, Andalusia, Spain). Soil Science 173 (5): 350-358. https://doi.org/10.1097/SS.0b013e31816d1ec4
EUROPEAN COMMISSION. (2020). EU Biodiversity Strategy for 2030: Bringing nature back into our lives. Brussels, 20.5.2020 COM(2020) 380 final.
EUROPEAN ENVIRONMENT AGENCY (EEA) (2020). Soil sealing in Europe: Current trends and environmental impacts.
EUROPEAN ENVIRONMENT AGENCY (EEA). (2022). Land Take and Land Degradation. In: Land Recycling in Europe: Approaches to Measuring and Managing Land Use Change. Publications Office of the European Union, Luxembourg.
FAO, (2006). Guidelines for Soil Description, fourth ed. FAO, Rome.
FAO, (2020). Standard operating procedure for soil calcium carbonate equivalent. Titrimetric method. Rome.
FINI A., FRANGI P., MORI J., DONZELLI D., FERRI-NI F. (2017). Nature based solutions to mitigate soil sealing in urban areas: Results from a 4-year study comparing permeable, porous, and impermeable pavements. Environ-mental research, 156: 443-454. https://doi.org/10.1016/j.envres.2017.03.032
GATTO A., ZHU X., MENGUCCI P., SABBATINI S., GATTO M. L., CABIBBO M., GROPPO R., DEFANTI S., DENTI, L. (2025) Transition from 2D to 3D production of tantalum nitride by reactive powder bed fusion. International Journal of Refractory Metals and Hard Materials, 128:107029. https://doi.org/10.1016/j.ijrmhm.2024.107029
Gessner M.O., Hinkelmann R., Nützmann G., Jekel M., Singer G., Lewandowski J., Nehls T., Barjenbruch M. (2014) Urban water interfaces. Journal of Hydrology, 514:226–232. https://doi.org/10.1016/j.jhydrol.2014.04.021
Giacomello G., Salvucci A., Serrani D., D’Acqui L., Cocco S., Cardelli V., Di Lonardo S., Pampuro N. (2024) Restoration of urban sealed soil, contamination analysis and evaluation of crop pollution: the REUSES project. Procedia Environmental Science, Engineering and Management 11(4), 531 – 538.
HANNA E., BRUNO D., COMÍN F.A. (2023) Evaluating naturalness and functioning of urban green infrastructure. Urban Forest Urban Green, 80:127825. https://doi.org/10.1016/j.ufug.2022.127825
HOWARD J.L. (2021). Urban anthropogenic soils—A review. Advances in Agronomy, 165: 1-57.https://doi.org/10.1016/bs.agron.2020.08.001
ISPRA - Italian Institute for Environmental Protection and Research (2024) CARG Project—Geological and Geothe-matic Cartography. (accessed 10 December 2024).
IUSS - Working Group WRB (2022) World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps, 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.
JIM C.Y., NG Y.Y. (2018) Porosity of roadside soil as indicator of edaphic quality for tree planting. Ecological engineering, 120: 364-374. https://doi.org/10.1016/j.ecoleng.2018.06.016
JIM C. Y. (1998) Urban soil characteristics and limitations for landscape planting in Hong Kong. Landscape and urban planning 40(4): 235-249. https://doi.org/10.1016/S0169-2046(97)00117-5
KACZMAREK Z., GAJEWSKI P., MOCEK A., OWC-ZARZAK W., GLINA B. (2015) Physical and water pro-perties of selected Polish heavy soils of various origins. Soil Science Annual 66 (4): 191-197.https://doi.org/10.1515/ssa-2015-0036
KIDA K., KAWAHIGASHI M. (2015) Influence of as- phalt pavement construction processes on urban soil for-mation in Tokyo. Soil Science and Plant Nutrition 61:135-146. http://dx.doi.org/10.1080/00380768.2015.1048182
LI H., HARVEY J., KENDALL A. (2013) Field measu-rement of albedo for different land cover materials and effects on thermal performance. Building and environment 59: 536-546. https://doi.org/10.1016/j.buildenv.2012.10.014
Lintern M.J., Sheard M.J., Chivas A.R. (2006) The source of pedogenic carbonate associated with gold-calcrete anomalies in the western Gawler Craton, South Australia. Chemical Geology 235: 299-334.https://doi.org/10.1016/j.chemgeo.2006.08.001
MARQUARD E., BARTKE S., GIFREU I FONT J., HUMER A., JONKMAN A., JÜRGENSON E., MAROT N., POELMANS L., REPE B., RYBSKI R., SCHRÖTER- SCHLAACK C., SOBOCKÁ J., TOPHØJ SØRENSEN M., VEJCHODSKÁ E., YIANNAKOU A., BOVET J., (2020). Land consumption and land take: enhancing conceptual clarity for evaluating spatial governance in the EU context. Sustainability 12: 8269. https://doi.org/10.3390/su12198269
MORGENROTH J., BUCHAN G.D. (2009) Soil moisture and aeration n beneath pervious and impervious pavements. Arboriculture and Urban Forestry 35(3): 135-141. https://doi.org/10.48044/jauf.2009.024
MSOFE N.K., SHENG L., LYIMO J. (2019) Land use change trends and their driving forces in the Kilombero Valley Floodplain, Southeastern Tanzania. Sustainability, 11(2):505. https://doi.org/10.3390/su11020505
NAMDAR-KHOJASTEH D., SHORAFA M., HEIDARI A. (2012) Estimating soil water content from permittivity for different mineralogies and bulk densities. Soil Science Society of America Journal 76:1149-1158. https://doi.org/10.2136/sssaj2011.0144
NYÉKI A., MILICS G., KOVÁCS A.J., NEMÉNYI M. (2017) Effects of Soil Compaction on Cereal Yield. Cereal research communications 45:1–22. https://doi.org/10.1556/0806.44.2016.056
NELSON D.W., SOMMERS L.E. (1996) Total carbon, organic carbon, and organic matter. In: Sparks D., Page A., Helmke P., Loeppert R.H. Soltanpour Tabatabai P.N.M.A., Johnston C.T., Sumner M.E. (Eds.), Methods of Soil Analysis. SSSA Book Series. https://doi.org/10.2136/sssabookser5.3.c34
NORRA S., FJER N., LI F., CHU X., XIE X., STÜBEN D. (2008) The influence of different land uses on minera-logical and chemical composition and horizonation of urban soil profiles in Qingdao, China. Journal of Soils and Sediments, 8:4-16. https://doi.org/10.1065/jss2007.08.250
PEEL M.C., FINLAYSON B.L., MCMAHON T.A., (2007) Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11: 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
PIOTROWSKA-DŁUGOSZ A., CHARZYŃSKI P.(2015) The impact of the soil sealing degree on microbial biomass, enzymatic activity, and physicochemical properties in the Ekranic Technosols of Toruń (Poland). Journal of Soils and Sediments, 15:47-59. https://doi.org/10.1007/s11368-014-0963-8
Prokof’eva T., Shishkov V., Kiriushin A. (2021) Calcium carbonate accumulations in Technosols of Moscow city. Journal of Soils and Sediments, 21:2049-2058. https://doi.org/10.1007/s11368-020-02696-y
PUSKÁS I., FARSANG A. (2009) Diagnostic indicators for characterizing urban soils of Szeged, Hungary. Geoder-ma 148(3-4): 267-281. https://doi.org/10.1016/j.geoderma.2008.10.014
Riddle R.L., Siebecker M.G., Weindorf D.C., Shaw R.K., Scharenbroch B.C. (2022) Chapter Four - Soils in urban and built environments: Pedogenic processes, characteristics, mapping, and classification. In: Sparks D.L. (Eds.), Advances in Agronomy. Academic press, pp.227-255. https://doi.org/10.1016/bs.agron.2022.02.004
Scalenghe R., Ajmone Marsan F. (2009) The anthropogenic sealing of soils in urban areas. Landscape and Urban Planning, 90: 1–10. https://doi.org/10.1016/j.landurbplan.2008.10.011
SERRANI D., AJMONE-MARSAN F., CORTI G., COCCO S., CARDELLI V., ADAMO P. (2022) Heavy metal load and effects on biochemical properties in urban soils of a medium-sized city, Ancona, Italy. Environmental Geochemistry and Health 44: 3425–3449. https://doi.org/10.1007/s10653-021-01105-8
Soil Survey Staff (2024) Field book for describing and sampling soils, version 4.0. USDA, Natural Resources Conservation Service. U.S. Government Printing Office.
STEVENSON A., HARTEMINK A.E. (2025) Sampling soils in urban ecosystems - A review. Advance in Agronomy, 189: 63-136. https://ui.adsabs.harvard.edu/link_gateway/2025AdAgr.189...63S/doi:10.1016/bs.agron.2024.09.001
TOBIAS S., CONEN F., DUSS A., WENZEL L.M., BU-SER C., ALEWELL C. (2018) Soil sealing and unsealing: State of the art and examples. Land degradation and deve-lopment, 29(6):2015-2024. https://doi.org/10.1002/ldr.2919
VEPRASKAS M.J., LINDBO D.L., LIN H. (2012) Redo-ximorphic features as related to soil hydrology and hydric soils. In: Lin (Eds). Hydropedology: synergistic integration of soil science and hydrology, 1st Edition. Academic Press, pp: 143-172. https://doi.org/10.1016/C2009-0-30647-9
VIEILLARD C., VIDAL-BEAUDET L., DAGOIS R., LOTHODE M., VADEPIED F., GONTIER M., SCHWARTZ C., OUVRARD S. (2024) Impacts of soil de-sealing practices on urban land-uses, soil functions and ecosystem services in French cities. Geoderma Regional 38, e00854. https://doi.org/10.1016/j.geodrs.2024.e00854
WANG J.P., SHA J.F., GE S., GAO X.G., DADDA A. (2024) Three-dimensional numerical modeling of soil-roots system based on X-ray computed tomography: Hydraulic effects study. Rhizosphere, 32:100975. https://doi.org/10.1016/j.rhisph.2024.100975
WASHBOURNE C.L., RENFORTH P., MANNING D.A.C. (2012) Investigating carbonate formation in urban soils as a method for capture and storage of atmospheric carbon. Science of the Total Environment, 431:166–176. https://doi.org/10.1016/j.scitotenv.2012.05.037
WEI Z., WU S., ZHOU S., LIN C. (2013) Installation of impervious surface in urban areas affects microbial biomass, activity (potential C mineralisation), and functional diversity of the fine earth. Soil Research, 51:59-67. https://doi.org/10.1071/SR12089
WESSOLEK G. (2008) Sealing of Soils. In: Marzluff J.M., Shulenberger R., Endlicher W., Alberti M., Bradley G., Ryan C., Simon U., ZumBrunnen C., (Eds.) Urban Ecolo-gy. Springer, Boston, MA, pp-161-179.https://doi.org/10.1007/978-0-387-73412-5_10
YAO Y.P., WANG L. (2019) Double pot cover effect in unsaturated soils. Acta Geotechnica, 14: 1037-1047. https://doi.org/10.1007/s11440-018-0705-y
ZAMANIAN K., PUSTOVOYTOV K., KUZYAKOV Y. (2016) Pedogenic carbonates: Forms and formation pro-cesses. Earth-Science Reviews 157: 1-17. http://dx.doi.org/10.1016/j.earscirev.2016.03.003
ZHAO D., LI F., WANG R. (2012) The effects of different urban land use patterns on soil microbial biomass nitrogen and enzyme activities in urban area of Beijing, China. Acta Ecologica Sinica, 32(3): 144-149. https://doi.org/10.1016/j.chnaes.2012.04.005
ZONG-QIANG W.E.I., SHAO-HUA W.U., SHENG-LU Z.H.O.U., JING-TAO L.I., QI-GUO, ZHA O (2014) Soil organic carbon transformation and related properties in urban soil under impervious surfaces. Pedosphere, 24(1), 56-64. https://doi.org/10.1016/S1002-0160(13)60080-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Valeria Cardelli, Andrea Salvucci, Ginevra Giacomello, Stefania Cocco, Niccolò Pampuro, Luigi D'Acqui, Sara Di Leonardo

This work is licensed under a Creative Commons Attribution 4.0 International License.