Heavy metals bioaccumulation in wild edible mushrooms of an Indo Burma biodiversity hotspot: Suitability assessment for safe consumption and food safety/security implications

Authors

  • VL Thachunglura Department of Environmental Science, Mizoram University, Aizawl, Mizoram India
  • Prabhat Kumar Rai Department of Environmental Science, Mizoram University, Aizawl, Mizoram India
  • Zohmangaiha Chawngthu Department of Environmental Science, Mizoram University, Aizawl, Mizoram India
  • ST Lalzarzovi Department of Environmental Science, Mizoram University, Aizawl, Mizoram India
  • John Zothanzama Department of Biotechnology, Mizoram University, Aizawl, Mizoram India
  • PC Vanlalhluna Department of Botany, Pachhunga University College – Mizoram University, Aizawl, Mizoram, India

DOI:

https://doi.org/10.6092/issn.2281-4485/21806

Keywords:

bioaccumulation, edible mushrooms, food safety/ security, heavy metals, human health

Abstract

Fungi can bio-accumulate heavy metals (HMs) from the contaminated soil which makes them a valuable tool and potential bio-agent for environmental remediation and agro-ecosystem restoration. However, it is essential to analyse the potential risks associated with the consumption of the HMs contaminated wild edible mushrooms to maintain the food safety/-security. To this end, HMs content was assessed in three wild edible mushrooms species collected from different regions of Aizawl Mizoram, North East India, which is underlying in an Indo Burma biodiversity hotspot. The analysis of HMs was carried out using atomic absorption spectrometry (AAS) to determine the contents of copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), nickel (Ni), lead (Pb) and cadmium (Cd) in mushrooms’ biomass on dry weight basis. The overall heavy metal content in the studied mushrooms was also found to follow the order: Cd (0.003–0.018 mg/kg) < Pb (0.034–0.182 mg/kg) < Ni (0.033–0.058 mg/kg) < Mn (3.3445–6.109 mg/kg) < Cu (7.085–12.285 mg/kg) < Zn (19.089–31.878 mg/kg) < Fe (30.589–49.203 mg/kg). Results revealed that all the HMs in these mushrooms were within safe limits for human consumption, thereby imposing negligible human health risks. However, long-term consumption of mushrooms with elevated Ni levels should be approached with caution. Nevertheless, sustained long-term HMs monitoring and estimation of human health risk assessment indices are warranted in biodiversity hotspots to mitigate the human health risks.  Last, the extrapolation of present study is necessary in urbanized and industrial landscapes with intense HMs contamination.  

References

ÁRVAY J., TOMÁŠ J., HAUPTVOGL M., KOPER-NICKÁ M., KOVÁČIK A., BAJČAN D., MASSÁNYI P. (2014) Contamination of wild-grown edible mushrooms by heavy metals in a former mercury-mining area. Journal of Environmental Science and Health, Part B 49 (11): 815–827. https://doi.org/10.1080/03601234.2014.938550

CHAWNGTHU Z., THACHUNGLURA V.L., ZO-THANZAMA J., KHUMLIANLAL J. (2024) Risk assessment of heavy metals in wild mushroom from Mizoram, India. Environmental Pollution and Management, 1: 147–151. https://doi.org/10.1016/j.epm.2024.09.001

CHAWNGTHU Z., TLUANGA L., ZOTHANZAMA J., THACHUNGLURA V.L., LALBIAKMAWIA B., REN-THLEI L. (2023) Wood rotting polyporales from the biodiversity reserves within the Indian subtropical habitat. Indian Journal of Microbiology Research, 10(3): 140–148. https://doi.org/10.18231/j.ijmr.2023.025

CHEN X.H., ZHOU H.B., QIU G.Z. (2009) Analysis of several heavy metals in wild edible mushrooms from regions of China. Bulletin of Environmental Contamination and Toxicology, 83(2): 280–285. https://doi.org/10.1007/s00128-009-9767-8

DAS, N. (2005) Heavy metal biosorption by mushrooms. Natural Product Radiance, 4, 454-459. DAVIS, R.M., SOMMER, R., MENGE, J.A. (2012) Field guide to mushrooms of Western North America. Berkeley: University of California Press, 335–336.

EDIRIWEERA A.N., KARUNARATHNA S.C., YAPA P.N., SCHAEFER D.A., RANASINGHE A.K., SUWAN-NARACH N., XU J. (2022) Ectomycorrhizal mushrooms as a natural bio-indicator for assessment of heavy metal pollution. Agronomy, 12(5): 1041. http://dx.doi.org/10.3390/agronomy12051041.

ELEKES C.C., BUSUIOC G., IONITA G. (2010) The bioaccumulation of some heavy metals in the fruiting body of wild growing mushrooms. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38: 147–151. https://doi.org/10.15835/nbha3824736.

FALANDYSZ J., BOROVIČKA J. (2013) Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Applied Microbiology and Biotechnology, 97(2): 477–501. https://doi.org/10.1007/s00253-012-4552-8.

FAO/WHO. (2011) Food standards programme Codex Committee on Contaminants in Foods, 5th Session. The Hague, 468–469. http://www.fao.org/input/download/ report/ 758/REP11_CFe.pdf.

FU Z., LIU G., WANG L. (2020) Assessment of potential human health risk of trace elements in wild edible mu-shroom species collected from Yunnan Province, China. Environmental Science and Pollution Research, 27(23): 29218–29227. https://doi.org/10.1007/s11356-020-09242-w.

GARCÍA M.Á., ALONSO J., MELGAR M.J. (2009) Lead in edible mushrooms: levels and bioaccumulation factors. Journal of Hazardous Materials, 167(1–3): 777–783. https://doi.org/10.1016/j.jhazmat.2009.01.058

GU Q., LIN R.L. (2010) Heavy metals zinc, cadmium, and copper stimulate pulmonary sensory neurons via direct acti-vation of TRPA1. Journal of Applied Physiology, 108(4): 891–897. https://doi.org/10.1152/japplphysiol.01371.2009

GUERRIERI N., MAZZINI S., BORGONOVO G. (2024) Food plants and environmental contamination: an update. Toxics, 12(5): 365. https://doi.org/10.3390/toxics12050365.

HU B., JIA X., HU J., XU D., XIA F., LI Y. (2017) Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China. International Journal of Environmental Research and Public Health, 14(9): 1042. https://doi.org/10.3390/ijerph14091042.

HYDE K.D., XU J., RAPIOR S., JEEWON R., LUMYONG S., NIEGO A.G.T., ABEYWICKRAMA P.D., ALUTHMUHANDIRAM J.V.S., BRAHAMANAGE R.S., BROOKS S., CHAIYASEN A., CHETHANA K.W.T., CHOMNUNTI P., CHEPKIRUI C., CHUAN- KID B., DE SILVA N.I., DOILOM M., FAULDS C., GENTEKAKI E., STADLER M. (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, 97(1): 1–136. https://doi.org/10.1007/s13225-019-00430-9.

ISILDAK O., TURKEKUL I., ELMASTAS M., ABOUL‐ ENEIN H.Y. (2007) Bioaccumulation of heavy metals in some wild‐grown edible mushrooms. Analytical Letters, 40(6): 1099–1116. https://doi.org/10.1080/00032710701297042.

ISILDAK Ö., TURKEKUL I., ELMASTAS M., TUZEN M. (2004) Analysis of heavy metals in some wild-grown edible mushrooms from the Middle Black Sea Region, Turkey. Food Chemistry, 86(4): 547–552. https://doi.org/10.1016/j.foodchem.2003.09.007.

JAISHANKAR M., TSETEN T., ANBALAGAN N., MATHEW B.B., BEEREGOWDA K.N. (2014) Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2): 60–72.https://doi.org/10.2478/intox-2014-0009.

KAKOTI M., HAZARIKA D., PARVEEN A., DULLAH, S., GHOSH A., SAHA D., BAROOAH M., BORO R. (2021) Nutritional properties, antioxidant and antihaemo-lytic activities of the dry fruiting bodies of wild edible mushrooms consumed by ethnic communities of Northeast India. Polish Journal of Food and Nutrition Sciences, 71(4): 463–480. https://doi.org/10.31883/pjfns/144044.

KALAC P., SVOBODA,L. (2000) A review of trace ele-ment concentrations in edible mushrooms. Food Chemi-stry, 69: 273–281. https://doi.org/10.1016/S0308-8146(99)00264-2.

KARUNARATHNA S.C., YANG Z.L., ZHAO R.L., VELLINGA E.C., BAHKALI A.H., CHUKEATIROTE E., HYDE K.D. (2011) Three new species of Lentinus from Northern Thailand. Mycological Progress, 10(4): 389–398. https://doi.org/10.1007/s11557-010-0701-6.

KAYA A., GENÇCELEP H., YUSUF UZUN Y., DEMIREL, K. (2011) Analysis of trace metal levels in wild mushrooms. Asian Journal of Chemistry, 23(3): 1099–1103.

KOKKORIS V., MASSAS I., POLEMIS E., KOUTRO-TSIOS G., ZERVAKIS G.I. (2019) Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece). Science of The Total Environment, 685: 280–296.https://doi.org/10.1016/j.scitotenv.2019.05.447.

LI P.H., KONG S.F., GENG C.M., HAN B., LU B., SUN R.F., ZHAO R.J., BAI Z.P. (2013) Assessing the hazardous risks of vehicle inspection workers’ exposure to particulate heavy metals in their workplaces. Aerosol and Air Quality Research, 13(1): 255–265. https://doi.org/10.4209/aaqr.2012.04.0087.

LIU B., HUANG Q., CAI H., GUO X., WANG T., GUI M. (2015) Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China. Food Chemistry, 188: 294–300. https://doi.org/10.1016/j.foodchem.2015.05.010.

LIU S., FU Y., SHI M., WANG H., GUO J. (2021) Pollution level and risk assessment of lead, cadmium, mercury, and arsenic in edible mushrooms from Jilin Province, China. Journal of Food Science, 86(8): 3374–3383. https://doi.org/10.1111/1750-3841.15849.

LIU S., LIU H., LI J., WANG Y. (2022) Research progress on elements of wild edible mushrooms. Journal of Fungi, 8(9): 964. https://doi.org/10.3390/jof8090964.

LÓPEZ A.R., BAREA-SEPÚLVEDA M., BARBERO G. F., FERREIRO-GONZÁLEZ M., LÓPEZ-CASTILLO J.G., PALMA M., ESPADA-BELLIDO E. (2022) Essential mineral content (Fe, Mg, P, Mn, K, Ca, and Na) in five wild edible species of Lactarius mushrooms from Southern Spain and Northern Morocco: Reference to daily intake. Journal of Fungi, 8(12): 1292. https://doi.org/10.3390/jof8121292.

LUO D., XIE Y.F., TAN Z.L., LI X.D. (2013) Removal of Cu²⁺ ions from aqueous solution by the abandoned mushroom compost of Flammulina velutipes. Journal of Environmental Biology, 34 (2): 359–365.

MALLIKARJUNA S.E., RANJINI A., HAWARE D.J., VIJAYALAKSHMI M.R., SHASHIREKHA M.N., RAJA-RATHNAM S. (2013) Mineral composition of four edible mushrooms. Journal of Chemistry, 1–5. https://doi.org/10.1155/2013/805284.

MANZI, P., GAMBELLI, L., MARCONI, S., VIVANTI, V., PIZZOFERRATO, L. (1999) Nutrients in edible mushrooms: An inter-species comparative study. Food Chemistry, 65(4): 477–482. https://doi.org/10.1016/s0308-8146(98)00212-x.

NAKALEMBE I., KABASA J. D., OLILA D. (2015) Comparative nutrient composition of selected wild edible mushrooms from two agro-ecological zones, Uganda. SpringerPlus, 4: 433. https://doi.org/10.1186/s40064-015-1188-z.

NDIMELE C.C., NDIMELE P.E., CHUKWUKA K.S. (2017) Accumulation of heavy metals by wild mushrooms in Ibadan, Nigeria. Journal of Health and Pollution, 7(16): 26–30. https://doi.org/10.5696/2156-9614-7.16.26.

OUZOUNI P.K., PETRIDIS D., KOLLER W.D., RIGA-NAKOS K.A. (2009) Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chemistry, 115(4): 1575–1580. https://doi.org/10.1016/j.foodchem.2009.02.014.

PAJĄK M., GĄSIOREK M., JASIK M., HALECKI W., OTREMBA K., PIETRZYKOWSKI M. (2020) Risk assessment of potential food chain threats from edible wild mushrooms collected in forest ecosystems with heavy metal pollution in Upper Silesia, Poland. Forests, 11(12): 1240. https://doi.org/10.3390/f11121240.

RAI P.K. (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Critical Reviews in Environmental Science and Technology, 39(9): 697–753. https://doi.org/10.1080/10643380801910058.

RAI P.K. (2011) An eco-sustainable green approach for heavy metals management: Two case studies of developing industrial region. Environmental Monitoring and Assessment, 184(1): 421–448. https://doi.org/10.1007/s10661-011-1978-x.

RAI P.K. (2022) Novel adsorbents in remediation of hazardous environmental pollutants: Progress, selectivity, and sustainability prospects. Cleaner Materials, 3: 100054. https://doi.org/10.1016/j.clema.2022.100054.

RAI P.K., LEE S.S., ZHANG M., TSANG Y.F., KIM K.H. (2019) Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125: 365–385. https://doi.org/10.1016/j.envint.2019.01.067.

RAI P.K., NONGTRI E.S., LALAWMPUII SYNGKLI R.B. (2024) Pistia stratiotes based heavy metals phytoremediation of a Himalayan river impacted by hydroelectric plant in an Indo-Burma hotspot region. Chemistry and Ecology, 40(7): 796–815. https://doi.org/10.1080/02757540.2024.2350050.

RAI P.K., SONNE C., KIM K.H. (2023) Heavy metals and arsenic stress in food crops: Elucidating antioxidative defense mechanisms in hyperaccumulators for food security, agricultural sustainability, and human health. Science of The Total Environment, 874: 162327. https://doi.org/10.1016/j.scitotenv.2023.162327.

SALIHOVIĆ M., PAZALJA M., ŠAPČANIN A., DOJČINOVIĆ B.P., ŠPIRTOVIĆ-HALILOVIĆ S. (2021) Element contents and health risk assessment in wild edible mushrooms of Bosnia and Herzegovina. Plant, Soil and Environment, 67(11): 668–677. https://doi.org/10.17221/423/2021-pse.

SANGEETHA V.J., DUTTA S., MOSES J.A., ANAN-DHARAMAKRISHNAN, C. (2022) Zinc nutrition and human health: Overview and implications. EFood, 3(5). https://doi.org/10.1002/efd2.17.

SARIKURKCU C., POPOVIĆ-DJORDJEVIĆ J., SOLAK M.H. (2020) Wild edible mushrooms from Mediterranean region: Metal concentrations and health risk assessment. Ecotoxicology and Environmental Safety, 190: 110058. https://doi.org/10.1016/j.ecoenv.2019.110058.

SHETTY, B.R., PAI, B.J., SALMATAJ, S.A., NAIK, N. (2024) Assessment of carcinogenic and non-carcinogenic risk indices of heavy metal exposure in different age groups using Monte Carlo simulation approach. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-81109-3

SUN L., CHANG W., BAO C., ZHUANG Y. (2017) Metal contents, bioaccumulation, and health risk assessment in wild edible Boletaceae mushrooms. Journal of Food Science, 82(6): 1500–1508. https://doi.org/10.1111/1750-3841.13698.

THACHUNGLURA V.L., CHAWNGTHU Z., RAI P.K., ZOTHANZAMA J. (2024b) Evaluation of nutritional value, heavy metals content, and health risk assessment of wild edible mushrooms in Mamit District, Mizoram, North East India. International Journal of Plant and Environment, 10(3): 79–85. https://doi.org/10.18811/ijpen.v10i03.08.

THACHUNGLURA V.L., RAI P.K., KHUMLIANLAL J., ZOTHANZAMA J. (2024a) A checklist of wild mushrooms in Mizoram, Northeast India. Plant Pathology and Quarantine, 14(1): 125–142.https://doi.org/10.5943/ppq/14/1/11.

THACHUNGLURA V.L., RAI P.K., ZOHMANGAIHA LALBIAKMAWIA B, LALMUANSANGI ZOTHANZA-MA J. (2023) Pleurotus giganteus as a valuable source of nutrients. Indian Journal of Science and Technology, 16 (sp1): 89–94. https://doi.org/10.17485/ijst/v16sp1.msc12.

THACHUNGLURA V.L., ZOTHANZAMA J., CHAWN-GTHU Z., BOCHUNG L., VANLALMALSAWMI R., RAI P.K. (2025) Molecular identification and proximate composition of wild edible wood growing mushrooms of Mizoram, North East India for food safety and livelihood. Journal of Applied and Natural Science, 17(1): 265–276. https://doi.org/10.31018/jans.v17i1.6338.

USEPA (2012) Integrated Risk Information System of the US Environmental Protection Agency. Washington, https://www.epa.gov/iris.

USEPA (2017) United States Environmental Protection Agency: IRIS Assessments. https://www.epa.gov/iris.

UZUN Y., GENÇCELEP H., KAYA A., AKCAY M.E. (2011) The mineral contents of some wild edible mush-rooms. Ekoloji, 20(80): 6–12. https://doi.org/10.5053/ekoloji.2011.802.

YAN A., WANG Y., TAN S.N., MOHD YUSOF M.L., GHOSH S., CHEN Z. (2020) Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00359.

ZHU F., QU L., FAN W., QIAO M., HAO H., WANG X. (2011) Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China. Environmental Monitoring and Assessment, 179(1–4): 191–199. https://doi.org/10.1007/s10661-010-1728-5.

ZOTHANZAMA J., BLANCHETTE A.R., LALRINA-WMI H. (2018) Identification of the edible and poisonous mushrooms of Mizoram. Project Report – New Land Use Policy. Memo No. B.15012/1/2016. Government of Mizoram, 1–24.

Downloads

Published

2025-06-16

How to Cite

Thachunglura, V., Rai, P. K., Chawngthu, Z., Lalzarzovi, S., Zothanzama, J., & Vanlalhluna, P. (2025). Heavy metals bioaccumulation in wild edible mushrooms of an Indo Burma biodiversity hotspot: Suitability assessment for safe consumption and food safety/security implications. EQA - International Journal of Environmental Quality, 70, 66–75. https://doi.org/10.6092/issn.2281-4485/21806

Issue

Section

Articles