Effects of organic carbon loading on microalgal growth and community dynamics in photobioreactors

Authors

  • Ayache Laabassi Department of Ecological and Environmental Sciences, Faculty of Natural and Life Sciences, University of Batna 2
  • Azzedine Fercha Department of Agronomy,Faculty of Nature and Life Sciences, University of Abbes Laghrour, Khenchela
  • Asma Boudehane Department of Ecological and Environmental Sciences, Faculty of Natural and Life Sciences, University of Batna 2
  • Smail Chafaa Department of Ecological and Environmental Sciences, Faculty of Natural and Life Sciences, University of Batna 2
  • Reguia Amat Allah Zereg Department of Ecological and Environmental Sciences, Faculty of Natural and Life Sciences, University of Batna 2
  • Nour El Houda Khelifi Department of Ecological and Environmental Sciences, Faculty of Natural and Life Sciences, University of Batna 2

DOI:

https://doi.org/10.60923/issn.2281-4485/22664

Keywords:

Organic carbon, Chlorophylla, Green algae, Photosynthesis, Wastewater treatment

Abstract

This study investigates the impact of varying organic carbon loads on the growth, composition, and productivity of microalgae in controlled photobioreactor systems. Three laboratory-scale bioreactors were operated with synthetic wastewater containing different concentrations of Carbon (100, 400, and 800 mgL-1), while maintaining consistent nitrogen and phosphorus inputs. Parameters monitored included pH, chlorophyll a, total suspended solids (TSS), volatile suspended solids (VSS), and microalgal community composition. Microscopic analysis revealed that moderate glucose concentrations (100–400 mgL-1) favored the proliferation of Scenedesmus sp and Chlorella sp, while excessive organic carbon input (800 mgL-1) led to a decline in species diversity and overall algal biomass. Statistical analysis confirmed significant variations in pH, chlorophyll a, TSS, and VSS across treatments, with bioreactor A showing the highest values of algal productivity and pH due to optimal photosynthetic activity. The results demonstrate that moderate organic carbon enrichment enhances algal growth and trophic complexity, while excessive organiccarbon suppresses phytoplankton development, likely due to microbial competition and acidification. These findings provide valuable insights for optimizing organic carbon inputs in algal-based wastewater treatment and ecological restoration strategies.

References

ASHFAQ A., ASHRAF S.S. (2024) Harnessing microalgae: Innovations for achieving UN Sustainable Development Goals and climate resilience. Journal of Water Process Engi-neering, 68:106506. https://doi.org/10.1016/j.jwpe.2024.106506

AZOV Y. (1982) Effect of pH on inorganic organic carbon uptake in algal cultures. Applied and Environmental Microbiology, 43(6): 1300–1306. https://doi-org/10.1128/aem.43.6.1300-1306.1982

BALISACAN L.G., FRANCO P.F.R., AGUINALDO H. A., BATUYONG M.A.R., HERNANDO-PAGALING A. G. (2025) Culture studies of phytoplankton isolated from Sumiling Dam and their bioremediation capacity in aquaculture wastewater. Letters in Applied Microbiology, 3:78(2), ovaf013. https://doi.org/10.1093/lambio/ova013

BARTLEY M.L., BOEING W.J., DUNGAN B., HOLGU-IN F.O., SCHAUB T. (2014) pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsissalina and invading organisms. Journal of Applied Phycology, 26 (3):1431–1437. https://doi.org/10.1007/s10811-013-0177-2

CAI Y., LIU Y., LIU T., GAO K., ZHANG Q., CAO L., WANG Y., WU X., ZHENG H., PENG H., RUAN R. (2020) Heterotrophic cultivation of Chlorellavulgaris using broken rice hydrolysate as organic carbon source for biomass and pigment production. Bioresource Technology, 323: 124607. https://doi:.org/10.1016/j.biortech.2020.124607

CHAI W.S., TAN W.G., MUNAWAROH H.S.H., GUPTA V.K., HO S.H., SHOW P.L. (2021) Multifaceted roles of microalgae in the application of wastewater biotreatment: a review. Environmental Pollution, 269:116236. https://doi.org/10.1016/j.envpol.2020.116236

CHAUDHARY R., DIKSHIT A.K., DIKSHIT A.K., DIKSHIT A.K., TONG Y.W. (2018) Carbon-dioxide biofixation and phytoremediation of municipal wastewater using Chlorella vulgaris and Scenedesmus obliquus. Environmental Science and Pollution Research, 25(21):20399–20406. https://doi.org/10.1007/s11356-017-9575-3

FUSTEC E., LEFEUVRE J.C. (2000) Fonctions et valeurs des zones humides. Dunod, Paris, France, pp. 426.

ISBN 2100044338, 9782100044337

GHAEMI S. (2020) Innovative Algae-Based Heatsink System for Data Center Integration (Master's thesis, The University of Arizona).

GONZÁLEZ‐OLALLA J.M., POWELL J.A., BRAHNEY J. (2024) Dust storms increase the tolerance of phytoplan-kton to thermal and pH changes. Global Change Biology, 30(1): e17055. https://doi.org/10.1111/gcb.17055

HUANG Y., LUO L., XU K., WANG X. (2019) Characteristics of external organic carbon uptake by microalgae growth and associated effects on algal biomass composition. Bioresource Technology, 292: 121887. https://doi.org/10.1016/j.biortech.2019.121887

JAHN M., VIALÁS V., KARLSEN J., MADDALO G., EDFORS F., FORSTRÖM B., UHLÉN M., KÄLL L., HUDSON E. (2018) Growth of cyanobacteria is constrained by the abundance of light and organic carbon assimilation proteins. Cell Reports, 25(2): 478–486. https://doi.org/10.1016/j.celrep.2018.06.007

KAMOLRAT N., KAMUANG S., KHAMKET T., SANG-MEK P., SITTHAPHANIT S. (2023) The effect of optimum photoperiod from blue LED light on growth of Chlorella vulgaris in photobioreactor tank. Natural and Life Sciences Communications, 22:38. https://doi.org/ 10.12982/NLSC.2023.038

KHOO K.S., AHMAD I., CHEW K. W., IWAMOTO K., BHATNAGAR A., SHOW P.L. (2023) Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review. Progress in Energy and Combustion Science, 96: 101071. https://doi.org/10.1016/j.pecs.2023.101071

KIØRBOE T. (2024) Organismal trade-offs and the pace of planktonic life. Biological Reviews, 99(6): 1992-2002. https://doi.org/ 10.1111/brv.13108

KLUG J. (2002) Positive and negative effects of alloc-thonous dissolved organic matter and inorganic nutrients on phytoplankton growth. Canadian Journal of Fisheries and Aquatic Sciences, 59(1): 85–95.

https://doi.org/10.1139/f01-191

LI Y., TAO Y., WANG Q., GONG Q., GAO X. (2023) Effects of organic carbon source and pH on growth, astaxanthin accumulation and endogenous phytohormone secretion of Haematococcuspluvialis. Journal of Applied Phycology, 35: 2815–2828.

LIM Y.A., CHONG M.N., FOO S.C., ILANKOON I.M.S. K. (2021) Analysis of direct and indirect quantification methods of carbon dioxide (CO2) fixation via microalgae cultivation in photobioreactors: A critical review. Renewable and Sustainable Energy Reviews, 137: 110579. https://doi.org/ 10.1016/j.rser.2020.110579

LIU S., HAN J., YAO L., LI H., XIN G., HO S.H., HUANG X. (2024) Integrated multilevel investigation of photosynthesis revealed the algal response distinction to differentially charged nanoplastics. Journal of Hazardous Materials, 475:134815. https://doi.org/10.1016/j.jhazmat.2024.134815.

LIU Z.C., ZHAI W.D. (2025) Carbonate and isotope chemistry in the outer Yellow River Estuary and beyond: Effects of flood and cold wave on inter annual variations in coastal stable organic carbon isotope. Marine Chemistry, 269: 104486. https://doi.org/10.1016/j.marchem.2025.104486

LUCIUS S., HAGEMANN M. (2024) The primary organic carbon metabolism in cyanobacteria and its regulation. Frontiers in Plant Science, 15: 1417680. https://doi.org/ 10.3389/fpls.2024.1417680

LUDENSKY M. (2004) Microbiological Control in Cooling water Systems. In: Paulus, W. (eds) Directory of Microbi-cides for the Protection of Materials. Springer, Dordrecht. https://doi.org/ 10.1007/1-4020-2818-0_8

MA X., MI Y., ZHAO C., WEI Q. (2022) A comprehensive review on organic carbon source effect of microalgae lipid accumulation for biofuel production. Science of the Total Environment, 806: 151387. https://doi.org/10.1016/j.scitotenv.2021.151387

MAIRET F., BAYEN T. (2021) The promise of dawn: microalgae photoacclimation as an optimal control problem of resource allocation. Journal of Theoretical Biology, 515: 110597. https://doi.org/ 10.1016/j.jtbi.2021.110597

MEYER F.W., VOGEL N., TEICHBERG M., UTHICKE S., WILD C. (2015) The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC) availability. PloS One, 10(8): e0133596. https://doi.org/ 10.1371/journal.pone.0133596

NAJAFABADI H.A., MALEKZADEH M., JALILIAN F., VOSSOUGHI M., PAZUKI G. (2015) Effect of various organic carbon sources on biomass and lipid production of Chlorellavulgaris during nutrient sufficient and nitrogen starvation conditions. Bioresource Technology, 180: 311-317. https://doi.org/ 10.1016/j.biortech.2014.12.076

PARK J.B.K., CRAGGS R. J. (2010) Wastewater treatment and algal production in high rate algal ponds with organic carbon dioxide addition. Water Science and Technology, 61(3): 633-639. https://doi.org/10.2166/wst.2010.951

PEREZ-GARCIA O., BASHAN Y., PUENTE M. (2011) Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and remo-ving ammonium by the microalga Chlorellavulgaris. Journal of Phycology, 47(1): 190–199. https://doi.org/ 10.1111/j.1529-8817.2011.00980.x

RANGLOVÁ K., LAKATOS G., MANOEL J.A.C., GRIVALSKÝ T., MASOJÍDEK J. (2019) Rapid screening test to estimate temperature optima for microalgae growth using photosynthesis activity measurements. Folia Microbiologica, 64(5): 615–625. https://doi.org/10.1007/s12223-019-00738-8

RAVEN J.A. (2011) The cost of photoinhibition. Physiolo-gia Plantarum, 142(1): 87–104. https://doi.org/10.1111/j.1399-3054.2011.01460.x

REDFIELD A.C. (1958) The biological control of chemical factors in the environment. American Scientist, 46(3): 230A-221.

REINL K.L., HARRIS T.D., ELFFERICH I., COKER A., ZHAN Q., DOMIS L.N.D.S., SWEETMAN J.N. (2022) The role of organic nutrients in structuring freshwater phyto-plankton communities in a rapidly changing world. Water Research, 219:118573. https://doi.org/10.1016/j.watres.2022.118573

ROSSI F., MUGNAI G., DE PHILIPPIS R. (2022) Cyano-bacterial biocrust induction: a comprehensive review on a soil rehabilitation-effective biotechnology. Geoderma, 415: 115766. https://doi.org/10.1016/j.geoderma.2022.115766

SCHUBERT N., ALVAREZ-FILIP L., HOFMANN L.C. (2023) Systematic review and meta-analysis of ocean acidification effects in Halimeda: Implications for algal organic carbonate production. Climate Change Ecology, 4: 100059. https://doi.org/10.1016/j.ecochg.2022.100059

SHENAWY E., ELKELAWY M., BASTAWISSI H., TAHA M., PANCHAL H., SADASIVUNI K., THAKAR, N. (2020) Effect of cultivation parameters and heat management on the algae species growth conditions and biomass production in a continuous feedstock photobioreactor. Renewable Energy, 148:807-815. https://doi.org/10.1016/j.renene.2019.10.109

SMITH R. (2016) The influence of organic carbon supplementation on the organic carbon metabolism of green algae. Doctoral dissertation, University of Sheffield.

TAMBAT V.S., SINGHANIA R.R., PATEL A.K., CHEN C.W., MICHAUD P., DONG C.D. (2025) Advancing sustainable astaxanthin-lipid biorefineries: Robust two-stage phytohormone-driven bioprocess in Chromochloriszofingiensis. Bioresource Technology Reports, 29: 102022. https://doi.org/10.1016/j.biteb.2025.102022

THINGSTAD T., BELLERBY R., BRATBAK G., BØRSHEIM K., EGGE J., HELDAL M., LARSEN A., NEILL C., NEJSTGAARD J., NORLAND S., SANDAA R., SKJOLDAL E., TANAKA T., THYRHAUG R., TÖPPER B. (2008) Counterintuitive organic carbon-to-nutrient coupling in an Arctic pelagic ecosystem. Nature, 455 (7211): 387–390. https://doi.org/10.1038/nature07285

TIAN L., JIANG H., SONG N., HE S., ALI F. (2022) Comparing the effects of algae and macrophyte residues' degradation on biological nitrogen fixation in freshwater lake sediments. Science of The Total Environment, 809: 151129. https://doi.org/10.1016/j.scitotenv.2021.151129

TÖPPER B., LARSEN A., THINGSTAD T.F., THYR-HAUG R., SANDAA R.A. (2010) Bacterial community composition in an Arctic phytoplankton mesocosm bloom: the impact of silicate and glucose. Polar Biology, 33: 1557-1565. https://doi.org/ 10.1007/s00300-010-0846-4

TRAVING S., ROWE O., JAKOBSEN N., SØRENSEN H., DINASQUET J., STEDMON C., ANDERSSON A., RIEMANN L. (2017) The effect of increased loads of dissolved organic matter on estuarine microbial community composition and function. Frontiers in Microbiology, 8: 351. https://doi.org/10.3389/fmicb.2017.00351

UGWUANYI E.D., NWOKEDIEGWU Z.Q.S., DADA M. A., MAJEMITE M.T., OBAIGBENA A. (2024) The role of algae-based wastewater treatment systems: A comprehensive review. World Journal of Advanced Research and Reviews, 21(02):937-949.

WIRTZ K.W., PAHLOW M. (2010) Dynamic chlorophyll and nitrogen: Carbon regulation in algae optimizes instantaneous growth rate. Marine Ecology Progress Series, 402: 81–96. https://doi.org/10.3354/meps08449

WU C., KAN J., NARALE D.D., LIU K., SUN J. (2022) Dynamics of bacterial communities during a seasonal hypoxia at the Bohai Sea: Coupling and response between abundant and rare populations. Journal of Environmental Sciences, 111: 324-339. https://doi.org/10.1016/j.jes.2021.04.013

ZHANG Y., REN L., HUAQIANG C., ZHOU X., YAO T., ZHANG Y. (2019) Optimization for Scenedesmus obliquus cultivation: the effects of temperature, light intensity and pH on growth and biochemical composition. Microbiology and Biotechnology Letters, 47(4): 614–620. https://doi.org/10.4014/mbl.1906.06005

Downloads

Published

2025-11-17

How to Cite

Laabassi, A., Fercha, A., Boudehane, A., Chafaa, S., Zereg, R. A. A., & Khelifi, N. E. H. (2026). Effects of organic carbon loading on microalgal growth and community dynamics in photobioreactors. EQA - International Journal of Environmental Quality, 71, 61–71. https://doi.org/10.60923/issn.2281-4485/22664

Issue

Section

Articles