Soil morphological, chemical and salinity characteristics of Capparis herbacea Willd. populations in Southern Kazakhstan

Authors

  • Orynbassar Tleuberlina NARXOZ University, Almaty
  • Almira Daulbayeva NARXOZ University, Almaty
  • Kaliash Stamkulova NARXOZ University, Almaty
  • Akerke Kenesbay Plant World Cadaster Laboratory, Institute of Botany and Phytointroduction Almaty
  • Gulbarshyn Satbaeva NARXOZ University, Almaty
  • Assem Mamurova Department of Botany and Agroecology, Faculty Biology and Biotechnology, al-Farabi Kazakh National University, Almaty
  • Aigul Yedilova Department of Botany and Agroecology, Faculty Biology and Biotechnology, al-Farabi Kazakh National University, Almaty
  • Gulzat Kairanova Department of Botany and Agroecology, Faculty Biology and Biotechnology, al-Farabi Kazakh National University, Almaty
  • Zhaukhar Kenzhebayeva Department of Botany and Agroecology, Faculty Biology and Biotechnology, al-Farabi Kazakh National University, Almaty
  • Asselkhan Otegenova Department of Fundamental Medicine, Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty
  • Ainur Mukash Department of Fundamental Medicine, Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty
  • Aidana Toregeldiyeva Department of Fundamental Medicine, Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty
  • Gulnafis Demzhanova Department of Fundamental Medicine, Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty
  • Nurzhigit Urnesh Department of Fundamental Medicine, Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty
  • Amina Kairanova Nazarbayev University Astana

DOI:

https://doi.org/10.60923/issn.2281-4485/22936

Keywords:

Capparis herbacea, soil morphology, granulometric composition, soil salinity, Southern Kazakhstan

Abstract

This study provides the first integrated characterization of soils associated with natural populations of Capparis herbacea Willd. in southern Kazakhstan. Field surveys and soil sampling were conducted in June-July 2023 across three contrasting sites: (Population 1, Sogeti Gorge), piedmont plain (Population 2, Merki), and semi-arid lowland (Population 3, Saryagash) environments. Standard profile descriptions and laboratory analyses followed national GOST and classical pedological methods. Across sites, soils were alkaline (pH 7.8-8.9) and carbonate-rich, with low humus (0.18-6.3%). Texture ranged from light loam (P1) to medium loam (P2) and sandy loam (P3); moisture distribution varied from higher values in mountain soils (up to 21.6%) to more uneven patterns in semi-arid lowlands (6.5-20.7%). Available macronutrients were generally limited: P2 showed near-absent phosphorus, while P3 had relatively higher potassium. Salinity contrasted sharply: P1-P2 non-saline (total salts ~0.037-0.062%), whereas P3 exhibited moderate to strong salinity (0.082-0.910%), with upper horizons moderately saline and deeper horizons strongly saline, dominated by sulfates and calcium ions. These findings represent the first base-line data on soils supporting Capparis herbacea Willd. in southern Kazakhstan. Capparis herbacea Willd. demonstrates strong ecological plasticity, tolerating both carbonate non-saline and sulfate-enriched saline soils. Its adaptability highlights potential for use as a soil quality indicator and in restoration of degraded lands in Central Asia.

References

ABOELSOUD H.M., HABIB A., ENGEL B., HASHEM A.A., ABOU EL-HASSAN W., GOVIND A., ELNASHAR A., EID M., KHEIR A.M.S. (2023) The combined impact of shallow groundwater and soil salinity on evapotranspiration using remote sensing in an agricultural alluvial setting. Journal of Hydrology: Regional Studies, 47:101372. https://doi.org/10.1016/j.ejrh.2023.101372

Academy of Sciences of the Kazakh SSR, Institute of Botany (1956-1966) Flora of Kazakhstan. Vols. 1-9. Alma-Ata: Academy of Sciences of the Kazakh SSR.

Academy of Sciences of the Kazakh SSR, Institute of Botany (1969) Illustrated plant identification guide of Kazakhstan. Vols. 1–2. Nauka, Alma-Ata.

ADENOVA D., SARSEKOVA D., ABSAMETOV M., MURTAZIN Y., SAGIN J., TRUSHEL L., MIROSHNICHENKO O. (2024) The study of groundwater in the Zhambyl Region, Southern Kazakhstan, to improve sustainability. Sustainability, 16(11):4597. https://doi.org/10.3390/su16114597

ALDAZHANOVA G., BEISSENOVA A., SKORINTSEVA I., MUSTAFAYEV Z., ALIASKAROV D. (2022) Assessment of land resources of the Zhambyl Region as the basis of recreation development and food security of the Republic of Kazakhstan. GeoJournal of Tourism and Geosites, 44(4):1183–1189. https://doi.org/10.30892/gtg.44401-933

ALEXANDROVA L.N., NAIDENOVA O.A. (1986) Laboratory and Practical Work in Soil Science. Agropromizdat, Moscow.

ARALOVA D., KARIYEVA J., KHUJANAZAROV T., TODERICH K. (2018) Drought variability and land degradation in Central Asia: assessment using remote sensing data and drought indices. In: Egamberdieva D., Öztürk M. (eds) Vegetation of Central Asia and Environs. Springer, Cham. https://doi.org/10.1007/978-3-319-99728-5_2

ARINUSHKINA E.V. (1977) A Guide to Soil Chemical Analysis. Moscow State University Press, Moscow.

BOBKOVA Y. (2008) Methods of Soil and Agrochemical Research. OGAU Press, Oryol.

CHADRAOUI S., ABI-RIZK A., EL-BEYROUTHY M., CHALAK L., OUAINI N., RAJJOU L. (2017) Capparis spinosa L. in a systematic review: a xerophilous species of multi values and promising potentialities for agrosystems under the threat of global warming. Frontiers in Plant Science, 8:1845. https://doi.org/10.3389/fpls.2017.01845

DAI J.Y., CHENG S.T. (2022) Modeling shallow soil moisture dynamics in mountainous landslide active regions. Frontiers in Environmental Science, 10:913059. https://doi.org/10.3389/fenvs.2022.913059

DEVKOTA M., MARTIUS C., GUPTA R.K., DEVKOTA K.P., MCDONALD A.J., LAMERS J.P.A. (2015) Managing soil salinity with permanent bed planting in irrigated production systems in Central Asia. Agriculture, Ecosystems and Environment, 202:90–97. https://doi.org/10.1016/j.agee.2014.12.006

DOMÉNECH-PASCUAL A., CHAVEZ RODRIGUEZ L., HAN X., CASAS-RUIZ J.P., FERRIOL-CIURANA J., DONHAUSER J., JORDAAN K., ALLISON S.D., FROSSARD A., PRIEMÉ A., RAMOND J.B., ROMANÍ A.M. (2025) Soil functions are shaped by aridity through soil properties and the microbial community structure. Applied Soil Ecology, 213:106313. https://doi.org/10.1016/j.apsoil.2025.106313

DOU X., MA X., ZHAO C., LI J., YAN Y., ZHU J. (2022) Risk assessment of soil erosion in Central Asia under global warming. Catena, 212:106056. https://doi.org/10.1016/j.catena.2022.106056

DUNIWAY M.C., PETRIE M.D., PETERS D.P.C., ANDERSON J.P., CROSSLAND K., HERRICK J.E. (2018) Soil water dynamics at 15 locations distributed across a desert landscape: insights from a 27-yr dataset. Ecosphere, 9(7):e02335. https://doi.org/10.1002/ecs2.2335

DURMEKBAYEVA S., TOYCHIBEKOVA G.B., KURMANBAYEV R., ZHUMABAYEVA A. (2024) Impact of environmental conditions on soil geochemistry in southern Kazakhstan. Sustainability, 16(15):6361. https://doi.org/10.3390/su16156361

EGLI M., FITZE P. (2001) Quantitative aspects of carbonate leaching of soils with differing ages and climates. Catena, 46(1):35–62. https://doi.org/10.1016/S0341-8162(01)00154-0

FENG W., JIANG J., LIN L., WANG Y. (2023) Soil calcium prompts organic carbon accumulation after decadal saline-water irrigation in the Taklamakan desert. Journal of Environmental Management, 344:118421. https://doi.org/10.1016/j.jenvman.2023.118421

FLOWERS T.J., COLMER T.D. (2008) Salinity tolerance in halophytes. New Phytologist, 179(4):945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x

GNANN S., BALDWIN J.W., CUTHBERT M.O., GLEESON T., SCHWANGHART W., WAGENER T. (2025) The influence of topography on the global terrestrial water cycle. Reviews of Geophysics, 63(1):e2023RG000810. https://doi.org/10.1029/2023RG000810

GOST 12536-2014. (2014) Soils. Methods of laboratory granulometric (grain-size) and microaggregate distribution [in Russian]. Moscow: Standardinform.

GOST 23740-79. (1979) Soils. Methods for determination of humus content [in Russian]. Moscow: Standardinform.

GOST 26205-91. (1991) Soils. Determination of mobile compounds of nitrogen, phosphorus and potassium [in Russian]. Moscow: Standardinform.

GOST 26423-85. (1985) Soils. Methods for determination of specific electrical conductivity, pH and solid residue of water extract [in Russian]. Moscow: Standardinform.

GOST 26425-85. (1985) Soils. Methods for determination of carbonate content [in Russian]. Moscow: Standardinform.

HASANI A., SMITH P., SHOKRI N. (2024) Negative correlation between soil salinity and soil organic carbon variability. Proceedings of the National Academy of Sciences USA, 121(18):e2317332121. https://doi.org/10.1073/pnas.2317332121

HU Y., HAN Y., ZHANG Y. (2020) Land desertification and its influencing factors in Kazakhstan. Journal of Arid Environments, 180:104203. https://doi.org/10.1016/j.jaridenv.2020.104203

HUSEIN H., MOUSA M., SAHWAN W., BÄUMLER R., LUCKE B. (2019) Spatial distribution of soil organic matter and soil organic carbon stocks in semi-arid area of Northeastern Syria. Natural Resources, 10(12):415–432. https://doi.org/10.4236/nr.2019.1012028

IBM CORP. (2024) IBM SPSS Statistics for Windows, Version 28.0. IBM Corp., Armonk, NY.

ISSANOVA G.T., ABUDUWAILI J., MAMUTOV Z.U. et al. (2017) Saline soils and identification of salt accumulation provinces in Kazakhstan. Arid Ecosystems, 7:243–250. https://doi.org/10.1134/S2079096117040035

JIANG L., BAO A., JIAPAER G., LIU R., YUAN Y., YU T. (2022) Monitoring land degradation and assessing its drivers to support Sustainable Development Goal 15.3 in Central Asia. Science of the Total Environment, 807(2):150868. https://doi.org/10.1016/j.scitotenv.2021.150868

JULIEV M., JUMANIYAZOV I., TOGAEV I., TOSHTEMIROV S., SAMIEV A., OCHILOV I., USMANOV K., SAIDOVA M. (2023) Land degradation in Central Asia: a review of papers from the Scopus database published in English for the period of 2000–2023. E3S Web of Conferences, 462:03020. https://doi.org/10.1051/e3sconf/202346203020

KAKABAYEV A.A., SHARIPOVA B.U., BARANOV-SKAYA N.V., RODRIGO-ILARRI J., RODRIGO-CLAVERO M.-E., LO PAPA G., BAZILEVSKAYA E.A., MURATBEKOVA S., NURMUKHANBETOVA N., DURMEKBAYEVA S., TOYCHIBEKOVA G.B., KURMANBAYEV R., ZHUMABAYEVA A. (2024) Impact of environmental conditions on soil geochemistry in southern Kazakhstan. Sustainability, 16(15):6361. https://doi.org/10.3390/su16156361

KHASANOV S., KULMATOV R., LI F., VAN AMSTEL A., BARTHOLOMEUS H., ASLANOV I., SULTONOV K., KHOLOV N., LIU H., CHEN G. (2023) Impact assessment of soil salinity on crop production in Uzbekistan and its global significance. Agriculture, Ecosystems and Environment, 342:108262. https://doi.org/10.1016/j.agee.2022.108262

KHASANOV S., KULMATOV R., LI F., VAN AMSTEL A., BARTHOLOMEUS H., ASLANOV I., SULTONOV K., KHOLOV N., LIU H., CHEN G. (2023) Impact assessment of soil salinity on crop production in Uzbekistan and its global significance. Agriculture, Ecosystems and Environment, 342:108262. https://doi.org/10.1016/j.agee.2022.108262

KOROLYUK T.V. (2012) Soil interpretation of space images in CPC systems. In: Digital Soil Cartography: Theoretical and Experimental Studies. Soil Institute named after V.V. Dokuchaev, Moscow, pp. 124–140.

KOROLYUK T.V. (2012) Soil interpretation of space images in CPC systems. In: Digital Soil Cartography: Theoretical and Experimental Studies. Soil Institute named after V.V. Dokuchaev, Moscow, pp. 124–140.

LI N., SKAGGS T.H., ELLEGAARD P., BERNAL A., SCUDIERO E. (2024) Relationships among soil moisture at various depths under diverse climate, land cover and soil texture. Science of the Total Environment, 947:174583. https://doi.org/10.1016/j.scitotenv.2024.174583

LI N., SKAGGS T.H., ELLEGAARD P., BERNAL A., SCUDIERO E. (2024) Relationships among soil moisture at various depths under diverse climate, land cover and soil texture. Science of the Total Environment, 947:174583. https://doi.org/10.1016/j.scitotenv.2024.174583

LIU W., MA L., SMANOV Z., SAMARKHANOV K., ABUDUWAILI J. (2022) Clarifying soil texture and salinity using local spatial statistics (Getis-Ord Gi* and Moran’s I) in Kazakh–Uzbekistan border area, Central Asia. Agronomy, 12(2):332. https://doi.org/10.3390/agronomy12020332

LIU W., MA L., SMANOV Z., SAMARKHANOV K., ABUDUWAILI J. (2022) Clarifying soil texture and salinity using local spatial statistics (Getis-Ord Gi* and Moran’s I) in Kazakh–Uzbekistan border area, Central Asia. Agronomy, 12(2):332. https://doi.org/10.3390/agronomy12020332

LIU Y., WANG P., RUAN H., WANG T., YU J., CHENG Y., KULMATOV R. (2020) Sustainable use of groundwater resources in the transboundary aquifers of the five Central Asian countries: challenges and perspectives. Water, 12(8):2101. https://doi.org/10.3390/w12082101

LIU Y., WANG P., RUAN H., WANG T., YU J., CHENG Y., KULMATOV R. (2020) Sustainable use of groundwater resources in the transboundary aquifers of the five Central Asian countries: challenges and perspectives. Water, 12(8):2101. https://doi.org/10.3390/w12082101

LU H., BURBANK D.W., LI Y. (2010) Alluvial sequence in the north piedmont of the Chinese Tian Shan over the past 550 kyr and its relationship to climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 285(3–4):343–353. https://doi.org/10.1016/j.palaeo.2009.11.031

LU H., BURBANK D.W., LI Y. (2010) Alluvial sequence in the north piedmont of the Chinese Tian Shan over the past 550 kyr and its relationship to climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 285(3–4):343–353. https://doi.org/10.1016/j.palaeo.2009.11.031

MAMUROVA A., KAIRANOVA G., AMERTAYEVA G., AKHTAYEVA N., BEYATLI A., KIYEKBAYEVA L., ISKAKOVA Z., ZHALDYBAEV K. and ZHUMALINA K. (2025b) Phytochemical profiling and antioxidant properties of Ajania fastigiata (C. Winkl.) Poljakov (Astera- ae). Farmacia, 73(4): 1038–1046. https://doi.org/10.31925/farmacia.2025.4.23

MAMUROVA A., KAIRANOVA G., AMERTAYEVA G., AKHTAYEVA N., BEYATLI A., KIYEKBAYEVA L., ISKAKOVA Z., ZHALDYBAEV K. and ZHUMALINA K. (2025b) Phytochemical profiling and antioxidant properties of Ajania fastigiata (C. Winkl.) Poljakov (Astera- ae). Farmacia, 73(4): 1038–1046. https://doi.org/10.31925/farmacia.2025.4.23

MAMUROVA A., KAIRANOVA G., BEYATLI A., SMAGULOVA G., YEDILOVA A., ZHALDYBAYEV K., ZHUMALINA K. and TOREGELDIYЕVA A. (2025c) Phytochemical analysis and antioxidant, antimicrobial, cytotoxic activities of different solvent extracts of Zygophyllum fabago L. Brazilian Journal of Biology, 85: e293666. https://doi.org/10.1590/1519-6984.293666

MAMUROVA A., KAIRANOVA G., BEYATLI A., SMAGULOVA G., YEDILOVA A., ZHALDYBAYEV K., ZHUMALINA K. and TOREGELDIYЕVA A. (2025c) ) Phytochemical analysis and antioxidant, antimicrobial, cytotoxic activities of different solvent extracts of Zygophyllum fabago L. Brazilian Journal of Biology, 85: e293666. https://doi.org/10.1590/1519-6984.293666

MAMUROVA A., KAIRANOVA G., ZAPARINA Y., MENGTAY A., KUDAIBERGENOVA A., YEDILOVA A., KALIYEV B. (2025a) Soil morphological and physico-chemical characteristics of Zygophyllum fabago L. populations in the Ili-Balkhash region of Kazakhstan. EQA – International Journal of Environmental Quality, 70:106–115. https://doi.org/10.6092/issn.2281-4485/22033

MAMUROVA A., KAIRANOVA G., ZAPARINA Y., MENGTAY A., KUDAIBERGENOVA A., YEDILOVA A., KALIYEV B. (2025a) Soil morphological and physico-chemical characteristics of Zygophyllum fabago L. populations in the Ili-Balkhash region of Kazakhstan. EQA – International Journal of Environmental Quality, 70:106–115. https://doi.org/10.6092/issn.2281-4485/22033

MUNNS R., TESTER M. (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

MUNNS R., TESTER M. (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

MUSSINA A., RAIMBEKOVA Z., SHAHGEDANOVA M., BARANDUN M., NARBAEVA K., ABDULLAYEVA A., NYSSANBAYEVA A. (2023) Mountain resilience: a tool for mudflow risk management in the Ile Alatau Mountains, Kazakhstan. Mountain Research and Development, 43(1) :D1–D10. https://doi.org/10.1659/mrd-journal-D-22-00004

MUSSINA A., RAIMBEKOVA Z., SHAHGEDANOVA M., BARANDUN M., NARBAEVA K., ABDULLAYEVA A., NYSSANBAYEVA A. (2023) Mountain resilience: a tool for mudflow risk management in the Ile Alatau Mountains, Kazakhstan. Mountain Research and Development, 43(1) :D1–D10. https://doi.org/10.1659/mrd-journal-D-22-00004

MUSSINA A., TURSYNGALI M., DUSKAYEV K., RODRIGO-ILARRI J., RODRIGO-CLAVERO M.-E., ABDULLAYEVA A. (2025) Forecasting channel morpho-dynamics in the Ulken Almaty River (Ile Alatau, Kazakh-stan). Water, 17(13):2029. https://doi.org/10.3390/w1713.2029

MUSSINA A., TURSYNGALI M., DUSKAYEV K., RODRIGO-ILARRI J., RODRIGO-CLAVERO M.-E., ABDULLAYEVA A. (2025) Forecasting channel morpho-dynamics in the Ulken Almaty River (Ile Alatau, Kazakh-stan). Water, 17(13):2029. https://doi.org/10.3390/w1713.2029

MUSTAFAYEV Z., TOLETAYEV A., SKORINTSEVA I., ALDAZHANOVA G. (2023) Assessment of natural moisture availability of Turkestan region of the Republic of Kazakhstan. Indonesian Journal of Geography, 55(2):352–360. https://doi.org/10.22146/ijg.79703

MUSTAFAYEV Z., TOLETAYEV A., SKORINTSEVA I., ALDAZHANOVA G. (2023) Assessment of natural moisture availability of Turkestan region of the Republic of Kazakhstan. Indonesian Journal of Geography, 55(2):352–360. https://doi.org/10.22146/ijg.79703

NAOREM A., JAYARAMAN S., DANG Y.P., DALAL R.C., SINHA N.K., RAO C.S., PATRA A.K. (2023) Soil constraints in an arid environment—challenges, prospects, and implications. Agronomy, 13(1):220. https://doi.org/10.3390/agronomy13010220

NAOREM A., JAYARAMAN S., DANG Y.P., DALAL R.C., SINHA N.K., RAO C.S., PATRA A.K. (2023) Soil constraints in an arid environment—challenges, prospects, and implications. Agronomy, 13(1):220. https://doi.org/10.3390/agronomy13010220

NASSYROV N.B., BAYSEITOV N.K., SRAMKO G. (2020) Geobotanical description and ecology of the population of the endemic species Galatella saxatilis Novopokr. in Syugaty mountain gorge. Eurasian Journal of Ecology, 65(4). https://doi.org/10.26577/EJE.2020.v65.i4.05

NASSYROV N.B., BAYSEITOV N.K., SRAMKO G. (2020) Geobotanical description and ecology of the population of the endemic species Galatella saxatilis Novopokr. in Syugaty mountain gorge. Eurasian Journal of Ecology, 65(4). https://doi.org/10.26577/EJE.2020.v65.i4.05

NAVARRO-TORRE S., GARCIA-CAPARRÓS P., NOGA-LES A., ABREU M.M., SANTOS E., CORTINHAS A.L., CAPERTA A.L. (2023) Sustainable agricultural management of saline soils in arid and semi-arid Mediterranean regions through halophytes, microbial and soil-based technologies. Environmental and Experimental Botany, 212:105397. https://doi.org/10.1016/j.envexpbot.2023.105397

NAVARRO-TORRE S., GARCIA-CAPARRÓS P., NOGA-LES A., ABREU M.M., SANTOS E., CORTINHAS A.L., CAPERTA A.L. (2023) Sustainable agricultural management of saline soils in arid and semi-arid Mediterranean regions through halophytes, microbial and soil-based technologies. Environmental and Experimental Botany, 212:105397. https://doi.org/10.1016/j.envexpbot.2023.105397

RAHMAN M.M., MOSTOFA M.G., KEYA S.S., SIDDI-QUI M.N., ANSARY M.M.U., DAS A.K., RAHMAN M.A., TRAN L.S.-P. (2021) Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants. International Journal of Molecular Sciences, 22(19):10733. https://doi.org/10.3390/ijms221910733

RAHMAN M.M., MOSTOFA M.G., KEYA S.S., SIDDI-QUI M.N., ANSARY M.M.U., DAS A.K., RAHMAN M.A., TRAN L.S.-P. (2021) Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants. International Journal of Molecular Sciences, 22(19):10733. https://doi.org/10.3390/ijms221910733

RAVI S., D’ODORICO P., BRESHEARS D.D., FIELD J.P., GOUDIE A.S., HUXMAN T.E., LI J., OKIN G.S., SWAP R.J., THOMAS A.D., VAN PELT S., WHICKER J.J., ZOBECK T.M. (2011) Aeolian processes and the biosphere. Reviews of Geophysics, 49(3):RG3001. https://doi.org/10.1029/2010RG000328

RAVI S., D’ODORICO P., BRESHEARS D.D., FIELD J.P., GOUDIE A.S., HUXMAN T.E., LI J., OKIN G.S., SWAP R.J., THOMAS A.D., VAN PELT S., WHICKER J.J., ZOBECK T.M. (2011) Aeolian processes and the biosphere. Reviews of Geophysics, 49(3):RG3001. https://doi.org/10.1029/2010RG000328

WRB (2022) World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. 4th Edition. International Union of Soil Sciences (IUSS), Vienna. https://files.isric.org/public/documents/WRB_fourth_edition_2022-12-18.pdf

Downloads

Published

2026-01-14

How to Cite

Tleuberlina, O., Daulbayeva, A., Stamkulova, K., Kenesbay, A., Satbaeva, G., Mamurova, A., … Kairanova, A. (2026). Soil morphological, chemical and salinity characteristics of Capparis herbacea Willd. populations in Southern Kazakhstan. EQA - International Journal of Environmental Quality, 72, 15–27. https://doi.org/10.60923/issn.2281-4485/22936

Issue

Section

Articles