Soil morphological, chemical and salinity characteristics of Capparis herbacea Willd. populations in Southern Kazakhstan
DOI:
https://doi.org/10.60923/issn.2281-4485/22936Keywords:
Capparis herbacea, soil morphology, granulometric composition, soil salinity, Southern KazakhstanAbstract
This study provides the first integrated characterization of soils associated with natural populations of Capparis herbacea Willd. in southern Kazakhstan. Field surveys and soil sampling were conducted in June-July 2023 across three contrasting sites: (Population 1, Sogeti Gorge), piedmont plain (Population 2, Merki), and semi-arid lowland (Population 3, Saryagash) environments. Standard profile descriptions and laboratory analyses followed national GOST and classical pedological methods. Across sites, soils were alkaline (pH 7.8-8.9) and carbonate-rich, with low humus (0.18-6.3%). Texture ranged from light loam (P1) to medium loam (P2) and sandy loam (P3); moisture distribution varied from higher values in mountain soils (up to 21.6%) to more uneven patterns in semi-arid lowlands (6.5-20.7%). Available macronutrients were generally limited: P2 showed near-absent phosphorus, while P3 had relatively higher potassium. Salinity contrasted sharply: P1-P2 non-saline (total salts ~0.037-0.062%), whereas P3 exhibited moderate to strong salinity (0.082-0.910%), with upper horizons moderately saline and deeper horizons strongly saline, dominated by sulfates and calcium ions. These findings represent the first base-line data on soils supporting Capparis herbacea Willd. in southern Kazakhstan. Capparis herbacea Willd. demonstrates strong ecological plasticity, tolerating both carbonate non-saline and sulfate-enriched saline soils. Its adaptability highlights potential for use as a soil quality indicator and in restoration of degraded lands in Central Asia.
References
ABOELSOUD H.M., HABIB A., ENGEL B., HASHEM A.A., ABOU EL-HASSAN W., GOVIND A., ELNASHAR A., EID M., KHEIR A.M.S. (2023) The combined impact of shallow groundwater and soil salinity on evapotranspiration using remote sensing in an agricultural alluvial setting. Journal of Hydrology: Regional Studies, 47:101372. https://doi.org/10.1016/j.ejrh.2023.101372
Academy of Sciences of the Kazakh SSR, Institute of Botany (1956-1966) Flora of Kazakhstan. Vols. 1-9. Alma-Ata: Academy of Sciences of the Kazakh SSR.
Academy of Sciences of the Kazakh SSR, Institute of Botany (1969) Illustrated plant identification guide of Kazakhstan. Vols. 1–2. Nauka, Alma-Ata.
ADENOVA D., SARSEKOVA D., ABSAMETOV M., MURTAZIN Y., SAGIN J., TRUSHEL L., MIROSHNICHENKO O. (2024) The study of groundwater in the Zhambyl Region, Southern Kazakhstan, to improve sustainability. Sustainability, 16(11):4597. https://doi.org/10.3390/su16114597
ALDAZHANOVA G., BEISSENOVA A., SKORINTSEVA I., MUSTAFAYEV Z., ALIASKAROV D. (2022) Assessment of land resources of the Zhambyl Region as the basis of recreation development and food security of the Republic of Kazakhstan. GeoJournal of Tourism and Geosites, 44(4):1183–1189. https://doi.org/10.30892/gtg.44401-933
ALEXANDROVA L.N., NAIDENOVA O.A. (1986) Laboratory and Practical Work in Soil Science. Agropromizdat, Moscow.
ARALOVA D., KARIYEVA J., KHUJANAZAROV T., TODERICH K. (2018) Drought variability and land degradation in Central Asia: assessment using remote sensing data and drought indices. In: Egamberdieva D., Öztürk M. (eds) Vegetation of Central Asia and Environs. Springer, Cham. https://doi.org/10.1007/978-3-319-99728-5_2
ARINUSHKINA E.V. (1977) A Guide to Soil Chemical Analysis. Moscow State University Press, Moscow.
BOBKOVA Y. (2008) Methods of Soil and Agrochemical Research. OGAU Press, Oryol.
CHADRAOUI S., ABI-RIZK A., EL-BEYROUTHY M., CHALAK L., OUAINI N., RAJJOU L. (2017) Capparis spinosa L. in a systematic review: a xerophilous species of multi values and promising potentialities for agrosystems under the threat of global warming. Frontiers in Plant Science, 8:1845. https://doi.org/10.3389/fpls.2017.01845
DAI J.Y., CHENG S.T. (2022) Modeling shallow soil moisture dynamics in mountainous landslide active regions. Frontiers in Environmental Science, 10:913059. https://doi.org/10.3389/fenvs.2022.913059
DEVKOTA M., MARTIUS C., GUPTA R.K., DEVKOTA K.P., MCDONALD A.J., LAMERS J.P.A. (2015) Managing soil salinity with permanent bed planting in irrigated production systems in Central Asia. Agriculture, Ecosystems and Environment, 202:90–97. https://doi.org/10.1016/j.agee.2014.12.006
DOMÉNECH-PASCUAL A., CHAVEZ RODRIGUEZ L., HAN X., CASAS-RUIZ J.P., FERRIOL-CIURANA J., DONHAUSER J., JORDAAN K., ALLISON S.D., FROSSARD A., PRIEMÉ A., RAMOND J.B., ROMANÍ A.M. (2025) Soil functions are shaped by aridity through soil properties and the microbial community structure. Applied Soil Ecology, 213:106313. https://doi.org/10.1016/j.apsoil.2025.106313
DOU X., MA X., ZHAO C., LI J., YAN Y., ZHU J. (2022) Risk assessment of soil erosion in Central Asia under global warming. Catena, 212:106056. https://doi.org/10.1016/j.catena.2022.106056
DUNIWAY M.C., PETRIE M.D., PETERS D.P.C., ANDERSON J.P., CROSSLAND K., HERRICK J.E. (2018) Soil water dynamics at 15 locations distributed across a desert landscape: insights from a 27-yr dataset. Ecosphere, 9(7):e02335. https://doi.org/10.1002/ecs2.2335
DURMEKBAYEVA S., TOYCHIBEKOVA G.B., KURMANBAYEV R., ZHUMABAYEVA A. (2024) Impact of environmental conditions on soil geochemistry in southern Kazakhstan. Sustainability, 16(15):6361. https://doi.org/10.3390/su16156361
EGLI M., FITZE P. (2001) Quantitative aspects of carbonate leaching of soils with differing ages and climates. Catena, 46(1):35–62. https://doi.org/10.1016/S0341-8162(01)00154-0
FENG W., JIANG J., LIN L., WANG Y. (2023) Soil calcium prompts organic carbon accumulation after decadal saline-water irrigation in the Taklamakan desert. Journal of Environmental Management, 344:118421. https://doi.org/10.1016/j.jenvman.2023.118421
FLOWERS T.J., COLMER T.D. (2008) Salinity tolerance in halophytes. New Phytologist, 179(4):945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x
GNANN S., BALDWIN J.W., CUTHBERT M.O., GLEESON T., SCHWANGHART W., WAGENER T. (2025) The influence of topography on the global terrestrial water cycle. Reviews of Geophysics, 63(1):e2023RG000810. https://doi.org/10.1029/2023RG000810
GOST 12536-2014. (2014) Soils. Methods of laboratory granulometric (grain-size) and microaggregate distribution [in Russian]. Moscow: Standardinform.
GOST 23740-79. (1979) Soils. Methods for determination of humus content [in Russian]. Moscow: Standardinform.
GOST 26205-91. (1991) Soils. Determination of mobile compounds of nitrogen, phosphorus and potassium [in Russian]. Moscow: Standardinform.
GOST 26423-85. (1985) Soils. Methods for determination of specific electrical conductivity, pH and solid residue of water extract [in Russian]. Moscow: Standardinform.
GOST 26425-85. (1985) Soils. Methods for determination of carbonate content [in Russian]. Moscow: Standardinform.
HASANI A., SMITH P., SHOKRI N. (2024) Negative correlation between soil salinity and soil organic carbon variability. Proceedings of the National Academy of Sciences USA, 121(18):e2317332121. https://doi.org/10.1073/pnas.2317332121
HU Y., HAN Y., ZHANG Y. (2020) Land desertification and its influencing factors in Kazakhstan. Journal of Arid Environments, 180:104203. https://doi.org/10.1016/j.jaridenv.2020.104203
HUSEIN H., MOUSA M., SAHWAN W., BÄUMLER R., LUCKE B. (2019) Spatial distribution of soil organic matter and soil organic carbon stocks in semi-arid area of Northeastern Syria. Natural Resources, 10(12):415–432. https://doi.org/10.4236/nr.2019.1012028
IBM CORP. (2024) IBM SPSS Statistics for Windows, Version 28.0. IBM Corp., Armonk, NY.
ISSANOVA G.T., ABUDUWAILI J., MAMUTOV Z.U. et al. (2017) Saline soils and identification of salt accumulation provinces in Kazakhstan. Arid Ecosystems, 7:243–250. https://doi.org/10.1134/S2079096117040035
JIANG L., BAO A., JIAPAER G., LIU R., YUAN Y., YU T. (2022) Monitoring land degradation and assessing its drivers to support Sustainable Development Goal 15.3 in Central Asia. Science of the Total Environment, 807(2):150868. https://doi.org/10.1016/j.scitotenv.2021.150868
JULIEV M., JUMANIYAZOV I., TOGAEV I., TOSHTEMIROV S., SAMIEV A., OCHILOV I., USMANOV K., SAIDOVA M. (2023) Land degradation in Central Asia: a review of papers from the Scopus database published in English for the period of 2000–2023. E3S Web of Conferences, 462:03020. https://doi.org/10.1051/e3sconf/202346203020
KAKABAYEV A.A., SHARIPOVA B.U., BARANOV-SKAYA N.V., RODRIGO-ILARRI J., RODRIGO-CLAVERO M.-E., LO PAPA G., BAZILEVSKAYA E.A., MURATBEKOVA S., NURMUKHANBETOVA N., DURMEKBAYEVA S., TOYCHIBEKOVA G.B., KURMANBAYEV R., ZHUMABAYEVA A. (2024) Impact of environmental conditions on soil geochemistry in southern Kazakhstan. Sustainability, 16(15):6361. https://doi.org/10.3390/su16156361
KHASANOV S., KULMATOV R., LI F., VAN AMSTEL A., BARTHOLOMEUS H., ASLANOV I., SULTONOV K., KHOLOV N., LIU H., CHEN G. (2023) Impact assessment of soil salinity on crop production in Uzbekistan and its global significance. Agriculture, Ecosystems and Environment, 342:108262. https://doi.org/10.1016/j.agee.2022.108262
KHASANOV S., KULMATOV R., LI F., VAN AMSTEL A., BARTHOLOMEUS H., ASLANOV I., SULTONOV K., KHOLOV N., LIU H., CHEN G. (2023) Impact assessment of soil salinity on crop production in Uzbekistan and its global significance. Agriculture, Ecosystems and Environment, 342:108262. https://doi.org/10.1016/j.agee.2022.108262
KOROLYUK T.V. (2012) Soil interpretation of space images in CPC systems. In: Digital Soil Cartography: Theoretical and Experimental Studies. Soil Institute named after V.V. Dokuchaev, Moscow, pp. 124–140.
KOROLYUK T.V. (2012) Soil interpretation of space images in CPC systems. In: Digital Soil Cartography: Theoretical and Experimental Studies. Soil Institute named after V.V. Dokuchaev, Moscow, pp. 124–140.
LI N., SKAGGS T.H., ELLEGAARD P., BERNAL A., SCUDIERO E. (2024) Relationships among soil moisture at various depths under diverse climate, land cover and soil texture. Science of the Total Environment, 947:174583. https://doi.org/10.1016/j.scitotenv.2024.174583
LI N., SKAGGS T.H., ELLEGAARD P., BERNAL A., SCUDIERO E. (2024) Relationships among soil moisture at various depths under diverse climate, land cover and soil texture. Science of the Total Environment, 947:174583. https://doi.org/10.1016/j.scitotenv.2024.174583
LIU W., MA L., SMANOV Z., SAMARKHANOV K., ABUDUWAILI J. (2022) Clarifying soil texture and salinity using local spatial statistics (Getis-Ord Gi* and Moran’s I) in Kazakh–Uzbekistan border area, Central Asia. Agronomy, 12(2):332. https://doi.org/10.3390/agronomy12020332
LIU W., MA L., SMANOV Z., SAMARKHANOV K., ABUDUWAILI J. (2022) Clarifying soil texture and salinity using local spatial statistics (Getis-Ord Gi* and Moran’s I) in Kazakh–Uzbekistan border area, Central Asia. Agronomy, 12(2):332. https://doi.org/10.3390/agronomy12020332
LIU Y., WANG P., RUAN H., WANG T., YU J., CHENG Y., KULMATOV R. (2020) Sustainable use of groundwater resources in the transboundary aquifers of the five Central Asian countries: challenges and perspectives. Water, 12(8):2101. https://doi.org/10.3390/w12082101
LIU Y., WANG P., RUAN H., WANG T., YU J., CHENG Y., KULMATOV R. (2020) Sustainable use of groundwater resources in the transboundary aquifers of the five Central Asian countries: challenges and perspectives. Water, 12(8):2101. https://doi.org/10.3390/w12082101
LU H., BURBANK D.W., LI Y. (2010) Alluvial sequence in the north piedmont of the Chinese Tian Shan over the past 550 kyr and its relationship to climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 285(3–4):343–353. https://doi.org/10.1016/j.palaeo.2009.11.031
LU H., BURBANK D.W., LI Y. (2010) Alluvial sequence in the north piedmont of the Chinese Tian Shan over the past 550 kyr and its relationship to climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 285(3–4):343–353. https://doi.org/10.1016/j.palaeo.2009.11.031
MAMUROVA A., KAIRANOVA G., AMERTAYEVA G., AKHTAYEVA N., BEYATLI A., KIYEKBAYEVA L., ISKAKOVA Z., ZHALDYBAEV K. and ZHUMALINA K. (2025b) Phytochemical profiling and antioxidant properties of Ajania fastigiata (C. Winkl.) Poljakov (Astera- ae). Farmacia, 73(4): 1038–1046. https://doi.org/10.31925/farmacia.2025.4.23
MAMUROVA A., KAIRANOVA G., AMERTAYEVA G., AKHTAYEVA N., BEYATLI A., KIYEKBAYEVA L., ISKAKOVA Z., ZHALDYBAEV K. and ZHUMALINA K. (2025b) Phytochemical profiling and antioxidant properties of Ajania fastigiata (C. Winkl.) Poljakov (Astera- ae). Farmacia, 73(4): 1038–1046. https://doi.org/10.31925/farmacia.2025.4.23
MAMUROVA A., KAIRANOVA G., BEYATLI A., SMAGULOVA G., YEDILOVA A., ZHALDYBAYEV K., ZHUMALINA K. and TOREGELDIYЕVA A. (2025c) Phytochemical analysis and antioxidant, antimicrobial, cytotoxic activities of different solvent extracts of Zygophyllum fabago L. Brazilian Journal of Biology, 85: e293666. https://doi.org/10.1590/1519-6984.293666
MAMUROVA A., KAIRANOVA G., BEYATLI A., SMAGULOVA G., YEDILOVA A., ZHALDYBAYEV K., ZHUMALINA K. and TOREGELDIYЕVA A. (2025c) ) Phytochemical analysis and antioxidant, antimicrobial, cytotoxic activities of different solvent extracts of Zygophyllum fabago L. Brazilian Journal of Biology, 85: e293666. https://doi.org/10.1590/1519-6984.293666
MAMUROVA A., KAIRANOVA G., ZAPARINA Y., MENGTAY A., KUDAIBERGENOVA A., YEDILOVA A., KALIYEV B. (2025a) Soil morphological and physico-chemical characteristics of Zygophyllum fabago L. populations in the Ili-Balkhash region of Kazakhstan. EQA – International Journal of Environmental Quality, 70:106–115. https://doi.org/10.6092/issn.2281-4485/22033
MAMUROVA A., KAIRANOVA G., ZAPARINA Y., MENGTAY A., KUDAIBERGENOVA A., YEDILOVA A., KALIYEV B. (2025a) Soil morphological and physico-chemical characteristics of Zygophyllum fabago L. populations in the Ili-Balkhash region of Kazakhstan. EQA – International Journal of Environmental Quality, 70:106–115. https://doi.org/10.6092/issn.2281-4485/22033
MUNNS R., TESTER M. (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
MUNNS R., TESTER M. (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
MUSSINA A., RAIMBEKOVA Z., SHAHGEDANOVA M., BARANDUN M., NARBAEVA K., ABDULLAYEVA A., NYSSANBAYEVA A. (2023) Mountain resilience: a tool for mudflow risk management in the Ile Alatau Mountains, Kazakhstan. Mountain Research and Development, 43(1) :D1–D10. https://doi.org/10.1659/mrd-journal-D-22-00004
MUSSINA A., RAIMBEKOVA Z., SHAHGEDANOVA M., BARANDUN M., NARBAEVA K., ABDULLAYEVA A., NYSSANBAYEVA A. (2023) Mountain resilience: a tool for mudflow risk management in the Ile Alatau Mountains, Kazakhstan. Mountain Research and Development, 43(1) :D1–D10. https://doi.org/10.1659/mrd-journal-D-22-00004
MUSSINA A., TURSYNGALI M., DUSKAYEV K., RODRIGO-ILARRI J., RODRIGO-CLAVERO M.-E., ABDULLAYEVA A. (2025) Forecasting channel morpho-dynamics in the Ulken Almaty River (Ile Alatau, Kazakh-stan). Water, 17(13):2029. https://doi.org/10.3390/w1713.2029
MUSSINA A., TURSYNGALI M., DUSKAYEV K., RODRIGO-ILARRI J., RODRIGO-CLAVERO M.-E., ABDULLAYEVA A. (2025) Forecasting channel morpho-dynamics in the Ulken Almaty River (Ile Alatau, Kazakh-stan). Water, 17(13):2029. https://doi.org/10.3390/w1713.2029
MUSTAFAYEV Z., TOLETAYEV A., SKORINTSEVA I., ALDAZHANOVA G. (2023) Assessment of natural moisture availability of Turkestan region of the Republic of Kazakhstan. Indonesian Journal of Geography, 55(2):352–360. https://doi.org/10.22146/ijg.79703
MUSTAFAYEV Z., TOLETAYEV A., SKORINTSEVA I., ALDAZHANOVA G. (2023) Assessment of natural moisture availability of Turkestan region of the Republic of Kazakhstan. Indonesian Journal of Geography, 55(2):352–360. https://doi.org/10.22146/ijg.79703
NAOREM A., JAYARAMAN S., DANG Y.P., DALAL R.C., SINHA N.K., RAO C.S., PATRA A.K. (2023) Soil constraints in an arid environment—challenges, prospects, and implications. Agronomy, 13(1):220. https://doi.org/10.3390/agronomy13010220
NAOREM A., JAYARAMAN S., DANG Y.P., DALAL R.C., SINHA N.K., RAO C.S., PATRA A.K. (2023) Soil constraints in an arid environment—challenges, prospects, and implications. Agronomy, 13(1):220. https://doi.org/10.3390/agronomy13010220
NASSYROV N.B., BAYSEITOV N.K., SRAMKO G. (2020) Geobotanical description and ecology of the population of the endemic species Galatella saxatilis Novopokr. in Syugaty mountain gorge. Eurasian Journal of Ecology, 65(4). https://doi.org/10.26577/EJE.2020.v65.i4.05
NASSYROV N.B., BAYSEITOV N.K., SRAMKO G. (2020) Geobotanical description and ecology of the population of the endemic species Galatella saxatilis Novopokr. in Syugaty mountain gorge. Eurasian Journal of Ecology, 65(4). https://doi.org/10.26577/EJE.2020.v65.i4.05
NAVARRO-TORRE S., GARCIA-CAPARRÓS P., NOGA-LES A., ABREU M.M., SANTOS E., CORTINHAS A.L., CAPERTA A.L. (2023) Sustainable agricultural management of saline soils in arid and semi-arid Mediterranean regions through halophytes, microbial and soil-based technologies. Environmental and Experimental Botany, 212:105397. https://doi.org/10.1016/j.envexpbot.2023.105397
NAVARRO-TORRE S., GARCIA-CAPARRÓS P., NOGA-LES A., ABREU M.M., SANTOS E., CORTINHAS A.L., CAPERTA A.L. (2023) Sustainable agricultural management of saline soils in arid and semi-arid Mediterranean regions through halophytes, microbial and soil-based technologies. Environmental and Experimental Botany, 212:105397. https://doi.org/10.1016/j.envexpbot.2023.105397
RAHMAN M.M., MOSTOFA M.G., KEYA S.S., SIDDI-QUI M.N., ANSARY M.M.U., DAS A.K., RAHMAN M.A., TRAN L.S.-P. (2021) Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants. International Journal of Molecular Sciences, 22(19):10733. https://doi.org/10.3390/ijms221910733
RAHMAN M.M., MOSTOFA M.G., KEYA S.S., SIDDI-QUI M.N., ANSARY M.M.U., DAS A.K., RAHMAN M.A., TRAN L.S.-P. (2021) Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants. International Journal of Molecular Sciences, 22(19):10733. https://doi.org/10.3390/ijms221910733
RAVI S., D’ODORICO P., BRESHEARS D.D., FIELD J.P., GOUDIE A.S., HUXMAN T.E., LI J., OKIN G.S., SWAP R.J., THOMAS A.D., VAN PELT S., WHICKER J.J., ZOBECK T.M. (2011) Aeolian processes and the biosphere. Reviews of Geophysics, 49(3):RG3001. https://doi.org/10.1029/2010RG000328
RAVI S., D’ODORICO P., BRESHEARS D.D., FIELD J.P., GOUDIE A.S., HUXMAN T.E., LI J., OKIN G.S., SWAP R.J., THOMAS A.D., VAN PELT S., WHICKER J.J., ZOBECK T.M. (2011) Aeolian processes and the biosphere. Reviews of Geophysics, 49(3):RG3001. https://doi.org/10.1029/2010RG000328
WRB (2022) World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. 4th Edition. International Union of Soil Sciences (IUSS), Vienna. https://files.isric.org/public/documents/WRB_fourth_edition_2022-12-18.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Orynbassar Tleuberlina, Almira Daulbayeva, Kaliash Stamkulova, Akerke Kenesbay, Gulbarshyn Satbaeva, Assem Mamurova, Aigul Yedilova, Gulzat Kairanova , Zhaukhar Kenzhebayeva, Asselkhan Otegenova, Ainur Mukash, Aidana Toregeldiyeva, Gulnafis Demzhanova, Nurzhigit Urnesh, Amina Kairanova

This work is licensed under a Creative Commons Attribution 4.0 International License.

