UNDERSTANDING THE CARBON ISOTOPIC SIGNATURE IN COMPLEX ENVIRONMENTAL MATRICES
DOI:
https://doi.org/10.6092/issn.2281-4485/4544Keywords:
carbon, speciation, isotope, environmental matricesAbstract
Elemental and isotopic analyses of carbon in environmental matrices usually integrate multiple sources having distinct concentration (wt%) and 13C/12C isotopic ratio. Interpretation necessarily needs the characterization of the diverse end-members that usually are constituted by carbonate, organic and elemental components. In this view, we developed a routine protocol based on the analytical coupling of elementary and isotopic compositions that is able to discriminate the inorganic (TIC) and organic (TOC) contributions to the total carbon (TC) content. The procedure is only based on thermal destabilization of the different carbon species and has been successfully applied on different environmental matrices (rocks, soils, biological samples) with a mean C elemental and isotopic recovery of 99% (SD = 3%) and -0.3‰ (SD = 0.3‰), respectively. The thermal speciation lead us to define precise isotopic end-members whose are unaffected by any chemical treatment of the samples. The approach allows accurate mass balance calculation that represents a powerful tool to quantify the distinct carbon species.
References
BIANCHINI G., NATALI C., DI GIUSEPPE D., BECCALUVA L. (2012) Heavy metals in soils and sedimentary deposits of the Padanian Plain (Ferrara, Northern Italy): Characterisation and biomonitoring. Journal of Soils and Sediments, 12:1145-1153.
BIANCHINI G., DI GIUSEPPE D., NATALI C., BECCALUVA L. (2013) Ophiolite inheritance in the Po Plain sediments: Insights on heavy metals distribution and risk assessment. Ofioliti, 38:1-14.
BOEHME S. E., BLAIR N. E., CHANTON J. P., MARTENS C. S. (1996) A mass balance of C13 and C12 in an organic-rich methane producing marine sediment. Geochimica et Cosmochimica Acta, 60: 3835-3848.
BOYLE J. (2004) A comparison of two methods for estimating the organic matter content of sediments. Comment in Journal of Paleolimnology, 31:125–127
BRAGAZZA L., IACUMIN P. (2009) Seasonal variation in carbon isotopic composition of bog plant litter during 3 years of field decomposition. Biology and Fertility of Soils, 46: 73-77.
BUNN, S.E., LONERAGAN, N.R., KEMPSTER, M.A. (1995). Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: implications for food-web studies using multiple stable isotopes. Limnol. Oceanogr., 40 (3):622–625.
CACHIERS H., BREMOND M.P., BUAT-MENARD P. (1989) Determination of atmospheric soot carbon with a simple thermal method. Tellus 41B: 379-390.
CAILLEAU G., BRAISSANT O., VERRECCHIA E. P. (2011) Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem. Biogeosciences, 8: 1755–1767.
CHANTIGNY M.H., ROCHETTE P., ANGERS D. A. (2001) Short-term C and N dynamics in a soil amended with pig slurry and barley straw: a field experiment. Canadian Journal of Soil Sciences, 81: 131-137.
CHATTERJEE A, LAL R,WIELOPOLSKI L,MARTIN MZ, EBINGER MH. (2009). Evaluation of different soil carbon determination methods. Critical Reviews in Plant Sciences, 28:164–178
DEINES P. (2002) The carbon isotope geochemistry of mantle xenoliths. Earth-Science Reviews, 58:247-278
DI GIUSEPPE D., VITTORI ANTISARI L., FERRONATO C., BIANCHINI G. (2014) New insights on mobility and bioavailability of heavy metals in soils of the Padanian alluvial plain (Ferrara Province, northern Italy). Chemie Der Erde (article in press).
FAURE G. (1986) Principles of Isotope Geology, 2nd Edition. Wiley Publishing, 589 pp.
FRANCESCHI, V.R., HORNER JR., H.T., (1980). Calcium oxalate crystals in plants. Bot. Rev., 46:361-427.
FREUDENTHAL T., WAGNER T., WENZHOFER F., ZABEL M., WEFER, G. (2001). Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: evidence from stable nitrogen and carbon isotopes. Geochim. Cosmochim. Acta, 65 (11): 1795–1808.
FROELICH P.N. (1980) Analysis of organic carbon in marine sediments. Limnol. Oceanogr., 25 (3):564–572.
HARRIS D., HORWATH W.R., VAN KESSEL C. (2001) Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon - 13 analysis, Soil Society of America Journal, 65: 1853 – 1586.
HUDSON J. D. (1977) Stable isotopes and limestone lithification. Journal of the Geological Society, 133: 637–660.
ISO 10693 (1995) Soil quality - Determination of carbonate content - Volumetric method. International Organisation for Standardization
KOLASINSKI J., ROGERS K., FROUIN P. (2008) Effects of acidification on carbon and nitrogen stable isotopes of benthic macrofauna from a tropical coral reef. Rapid Commun. Mass Spectrom., 22:2955–2960.
KRZYCKI J.A., KENEALY W.R., DENIRO M.J., ZEIKUS J.G. (1987). Stable carbon isotope fractionation by Methanosarcina barkeri during methanogenesis from acetate, methanol, or carbon dioxide-hydrogen. Applied and Environmental Microbiology, 53: 2597–2599.
MEYER K.M., YU M., LEHRMANN D., VANDESCHOOTBRUGGE B., PAYNE J.L. (2013). Constraints on Early Triassic carbon cycle dynamics from paired organic and inorganic carbon isotope records. Earth and Planetary Science Letters, 361: 429–435.
MEYERS P. A. (1997) Organic geochemical proxies of palaeogeographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry 27: 213–250.
MEYERS P.A. (2003) Applications of organic geochemistry of paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry, 34: 261−289.
MICHENER R., LAJTHA K. (2007) Stable Isotopes in Ecology and Environmental Science, 2nd Edition. Wiley-Blackwell Publishing, 594 pp.
MORGUN E. G., KOVDA I. V., RYSKOV Y.A. G., OLEINIK S. A. (2008) Prospects and Problems of Using the Methods of Geochemistry of Stable Carbon Isotopes in Soil Studies. Eurasian Soil Science, 41: 265–275.
NELSON D.W., SOMMERS L.E., SPARKS D., PAGE A., HELMKE P. et AL. (1996) Total carbon, organic carbon, and organic matter. Methods of soil analysis Part 3- chemical methods: 961–1010.
NORDT L.C., HALLMARK C.T., WILDING L.P., BOUTTON T.W. (1998) Quantifying pedogenic carbonate accumulations using stable carbon isotopes. Geoderma, 82: 115–136.
PALLASSER R., MINASNY B., MCBRATNEY A.B. (2013). Soil carbon determination by thermogravimetrics. PeerJ 1:e6.
PINNEGAR J.K., POLUNIN N.V.C. (1999) Differential fractionation of delta C-13 and delta N-15 among fish tissues: implications for the study of trophic interactions. Funct. Ecol., 13 (2):225–231.
RABENHORST M.C. (1988) Determination of organic and carbonate carbon in calcareous soils using dry combustion. Soil Science Society of America Journal, 52: 965–969.
SERRANO O., SERRANO L., MATEO M.A., COLOMBINI I., CHELAZZI L., GAGNARLI E., FALLACI M. (2008) Acid washing effect on elemental and isotopic composition of whole beach arthropods: implications for food web studies using stable isotopes. Acta Oecol., 34: 89–96
SCHLACHER T.A., CONNOLLY R.M. (2014) Effects of acid treatment on carbon and nitrogen stable isotope ratios in ecological samples: A review and synthesis. Methods in Ecology and Evolution, 5: 541-550.
SHAHACK-GROSS R. (2011) Herbivorous livestock dung: formation, taphonomy, methods for identification, and archaeological significance. Journal of Archaeological Science, 38: 205-218.
SHARPE Z. (2007) Principles of Isotope Geochemistry, Prentice Hall. USA
SOON Y. K., ABBOUD S.A. (1991) Comparison of some methods for soil organic - carbon de - termination. Comm. in Soil Sci. and Plant Anal., 22: 943-954.
SKINNER H.C.W., EHRLICH H. (2014) Biomineralization. Treatise on Geochemistry 2nd Ed., vol. 10: 105-162.
SOMMER S.G., HUSTED S. (1995) The chemical buffer system in raw and digested animal slurry. J The Journal of Agricultural Science, 124: 45–53.
SPRINGER U. KLEE J. (1954) Prufung der Leistungsfa higkeit von einigen wichtigen Verfahren zur Bestimmung des Kohlenstoffs mittels Chromschwefelsaure sowie Vorschlag einer neuen Schnellmethode. Journal of Plant Nutrition and Soil Science, 64: 1–26.
VITTORI ANTISARI L., BIANCHINI G., DINELLI E., FALSONE G., GARDINI A., SIMONI A., TASSINARI R., VIANELLO G. (2014) Critical evaluation of an intercalibration project focused to the definition of new multi-element soil standards materials (MO1 and ML1). EQA, 16:1-26.
WALKLEY A., BLACK I.A. (1934) An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63:251-263.
WINN J., HARDEN J.W., FRIES T.L. (2006) Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin. Geoderma 131 :89-109.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Claudio Natali, Gianluca Bianchini
Copyrights and publishing rights of all the texts on this journal belong to the respective authors without restrictions.
Articles published since 2020 are licensed under a Creative Commons Attribution 4.0 International License:
Previous articles are licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License: