THE “SERPENTINE SYNDROME” (H. JENNY, 1980): A PROXY FOR SOIL REMEDIATION
DOI:
https://doi.org/10.6092/issn.2281-4485/4547Keywords:
serpentine soils, serpentinophytes, metal uptake, phytoremediationAbstract
Serpentine soils have relatively high concentrations of PTEs (Co, Cr, Cu, Fe, Ni) but generally low amounts of major nutrients. They often bear a distinctive vegetation, and a frequently-used approach to understanding serpentine ecology and related environmental hazard has been the chemical analysis of soils and plants. In this paper we report past and current studies on serpentine soils and serpentinophytes. The serpentine vegetation differs from the conterminous non-serpentine areas, being often endemic, and showing macroscopic physionomical characters. Similarly, at microscopic level cytomorphological characteristics of the roots and variations in biochemical parameters were recorded in serpentinophytes. Light microscopy observations showed depressed mitotic activity in the meristematic zone, and consequent reduced root growth. The different tolerance mechanisms responsible for plant adaption to high concentrations of PTEs in serpentine soils can be related to the capacity of plants to limit metal uptake and translocation. The majority of serpentinophytes tend to limit metal absorption to roots: the cell wall constitutes a barrier against metal penetration inside plant tissues. Only a few species are able to accumulate metals in their aerial parts, acting a tolerance mechanism to very high metal concentrations. Serpentinophytes, therefore, could represent proxies for plants used in remediation of metal-contaminated soils and in phytomining as well.
References
ANGELONE M., BINI C., VASELLI O., CORADOSSI N., PANCANI M.G. (1991) Total and EDTA-extractable element contents in ophiolitic soils from Tuscany (Italy). Zeitsch. Pflanz. Boden., 154:217-223.
ANGELONE M. BINI C., VASELLI, O., CORADOSSI N. (1993) Pedochemical evolution and trace elements availability to plants in ophiolitic soils. Sci. Tot. Env., 129:291-309.
ARCHER F.C., HODGSON I.M. (1987) Total and extractable trace element contents in soils of England and Wales. J. Soil Sci., 38:421-431.
BAKER A.J.M. (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J. Plant Nutr., 3:643-654.
BARZANTI R., COLZI I., ARNETOLI M., GALLO A., PIGNATTELLI S., GABBRIELLI R., GONNELLI C. (2011) Cadmium phytoextraction potential of different Alyssum species. J. Haz. Mat.,196:66–72.
BERROW M.L., REAVES G.A. (1985) Extractable copper concentrations in Scottish soils. J. Soil Sci., 71:103-121.
BINI C., GABALLO S., ZILOCCHI L. (2004) Land Contamination And Soil-Plant Interactions In The Temperino Cu-Zn-Pb Mine (Campiglia M.Ma, Southern Tuscany, Italy). Proc. 1th Eur. Geosci. Un. Congr., Nice, 6, A-07153.
BINI C., GRAGNANI R., RISTORI G. G. (1983) Soil genesis and evolution from mafic and ultramafic rocks in Northern Apennines. Ofioliti, 9, Suppl. 1.
BONIFACIO E, ZANINI E, BOERO V, FRANCHINI-ANGELA M. (1997) Pedogenesis in a soil catena on serpentinite in Northwestern Italy. Geoderma 75:33–51.
BONIFACIO E, FALSONE G, PIAZZA S. (2010) Linking Ni and Cr concentrations to soil mineralogy: does it help to assess metal contamination when the natural background is high? J. Soil Sediments, 10:1475–1486.
BONIFACIO E., FALSONE G., CATONI M. (2013). Influence of serpentine abundance on the vertical distribution of available elements in soils. Plant Soil, 368:493–506.
BORTOLOTTI V. (1983) Stratigrafia, tettonica ed evoluzione delle ofioliti della Toscana. Mem. Soc. Geol. It., 25: 63-74.
BROOKS R.R.. (1987) Serpentine and its vegetation. Dioscorides Press, Portland, 454 p.
CECCONI S., DANIELE E, CORTI G. (1990) Pedogenesi di terreni su rocce ofiolitiche. Formazione di Impruneta (Firenze). Acc. It. Sci. For., Tipografia Coppini, Firenze, 92-108.
CORTESOGNO L., MAZZUCOTELLI A., VANNUCCI R. (1979) Alcuni esempi di pedogenesi su rocce ultrafemiche in clima mediterraneo. Ofioliti, 4:295-312.
D’AMICO M.E., PREVITALI F. (2012) Edaphic influences of ophiolitic substrates on vegetation in the Western Italian Alps. Plant Soil, 351:73–95.
D’AMICO M.E., BONIFACIO E., ZANINI E. (2014) Relationships between serpentine soils and vegetation in a xeric inner-Alpine environment. Plant Soil, 376:111–128.
DINELLI, E., LOMBINI, A., FERRARI, C., SIMONI, A. (1997) Heavy metals in the serpentinite soils of selected outcrops of Piacenza and Parma provinces (Northern Apennines, Italy). Mineral. Petrogr. Acta, 40:241–255.
ERNST W.H.O., VERKLEIJ J.A.C., SCHAT J.A.C. (1992) Metal tolerance in plants. Acta Bot. Neerl., 41: 229-248.
FRANCO R., SANCHEZ-OLEA R., REYES-REYES E.M., PANAYOTIDIS M. (2009) Environmental toxicity, oxidative stress and apoptosis: menage a trois. Mutat Res/Gen Toxicol Environ Mutagen., 674:3–22.
GABBRIELLI R., PANDOLFINI T., VERGNANO O., PALANDRI M.R. (1990) Comparison of two serpentine species with different nickel tolerance strategies. Plant Soil, 122:271-277.
GALARDI F., MENGONI A., PUCCI S., BARLETTI L., MASSI L., BARZANTI R., GABBRIELLI R., GONNELLI C. (2007) Intra-specific differences in mineral element composition in the Ni-hyperaccumulator Alyssum bertolonii: A survey of populations in nature. Env. Exper. Botany, 60:50–56
GIULIANI C., PELLEGRINO R., TIRILLINI B., MALECI BINI L. (2008) Micromorphological and chemical characterisation of Stachys recta L. subsp. serpentini (Fiori) Arrigoni in comparison to Stachys recta L. subsp. recta (Lamiaceae). Flora, 203:376–385.
GONNELLI C., RENELLA G. (2013) Nickel and Chromium. In: B.J. Alloway (ed.), Heavy metals in soils: trace metals and metalloids in soils and their availability. Springer, Dordrecht, pp. 335-366.
GONNELLI C., GALARDI F., GABBRIELLI R. (2001) Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa. Physiol. Plant, 113:507-514.
HILL E.J., OLIVER N. H.S., FISHER L., CLEVERLEY J. S., NUGUS M. J. (2014) Using geochemical proxies to model nuggety gold deposits: An example from Sunrise Dam, Western Australia. J.Geoch. Explor., 145:12–24.
JENNY H. (1980) The soil resource. Origin and behaviour. Springer, New York.
JOHNSTON W.R., PROCTOR J. (1981) Growth of serpentine and non-serpentine races of festuca rubra in solutions simulating the chemical conditions in a toxic serpentine soil. J. Ecol., 69(3):855-869.
KABATA-PENDIAS A. (2011) Trace Elements in Soils and Plants (4th ed.). Boca Raton: CRC Press. Taylor & Francis Group.
KABATA-PENDIAS A., MUKHERJEE A.B. (2007) Trace Elements from Soil to Human. Springer, Dordrecht, p.561.
KAZAKOU E., DIMITRAKOPOULOS P.G., REEVES R.D., BAKER A.J.M., TROUMBIS A.Y. (2008). Hypotheses, mechanisms, and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol. Rev., 83:495–508.
LOMBINI A., DINELLI E., LLUGANY M., POSCHENRIEDER C., BARCELÓ J. (2004) Differences in mineral nutrition and copper resistance between ecotypes of Silene armeria l. Plants from serpentine and a non-serpentine sites. Rev. Valdôtaine Hist. Nat., 58:103-119.
LOMBINI A., DINELLI E., FERRARI C., SIMONI A. (1998) Plant–soil relationships in the serpentinite screes of Mt. Prinzera (Northern Apennines, Italy). J.Geoch. Expl., 64:19–33.
LLUGANY M., LOMBINI A., POSCHENRIEDER C., DINELLI E., BARCELÓ J. (2003) Different mechanisms account for enhanced copper resistance in Silene armeria ecotypes from mine spoil and serpentine sites. Plant Soil, 251:55-63.
MALECI L., BUFFA G., WAHSHA M., BINI C. (2014) Morphological changes induced by heavy metals in dandelion (Taraxacum officinale Web) growing on mine soils. J. Soils and Sediments, 14:731–743. DOI 10.1007/s11368-013-0823-y
MALECI L., GENTILI L., PINETTI A., BELLESIA F., SERVETTAZ O. (1999) Morphological and phytochemical characters of Thymus striatus Vahl growing in Italy. Plant Biosyst., 133:137–144.
MALECI L., CIONI P., FLAMINI G., SPINELLI G., SERVETTAZ O. (1997) Comparative observations on Thymus striatus Vahl and Thymus striatus var. ophioliticus Lacaita in central Italy. Lagascalia, 19: 857-864.
MINGUZZI V., MORANDI N., NANNETTI M.C. (1985) Mineralogia e geochimica dei suoli impostati sull’ofiolite di Serra di Zanchetto (Bologna). Min. Petr. Acta, 29:145-163.
OORT K. (2013) Copper. In: B. Alloway (ed.): Heavy metals in soils. Springer, Dordrecht, pp367-464.
PICCARDO G. (1983) Genesi delle ofioliti dell’Appenino settentrionale. Mem Soc.Geol.It., 25:75-89.ARTICLE IN
PROCTOR J. (1971) The plant ecology of serpentine. Plant response to serpentine soils. J. Ecol., 59:397-410.
PROCTOR J., WOODELL S.R. (1975) The ecology of serpentine soils. Advances in Ecological Research, 9:255-366.
RASCIO N., DALLA VECCHIA F., LA ROCCA N., BARBATO R., PAGLIANO C., RAVIOLO M., GONNELLI C., GABBRIELLI R. (2008) Metal accumulation and damage in rice (cv. Vialone nano) seedlings exposed to cadmium. Env. Exper. Botany, 62:267–278.
RASCIO N., NAVARI-IZZO F. (2011) Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science 180:169–181.
ROBINSON B.H., CHIARUCCI A., BROOKS R.R., PETIT D., KIRKMAN J.H., GREGG P.E.H., DE DOMINICIS V. (1997) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J. Geoch. Expl. 59:75-86.
SYMEONIDIS L., MCNEILLY T., BRADSHAW A.D. (1985) Differential tolerance of three cultivars of Agrostis capillaries L. to cadmium, copper, lead, nickel and zinc. New Phytol., 101:309-315.
VERGNANO GAMBI O. (1975) La vegetazione delle serpentine:aspetti ecologici e fisiologici. Inf. Bot. Ital., 7:344-348.
VERGNANO GAMBI O., GABBRIELLI R., PANCARO L. (1982) Nickel, chromium, and cobalt in plants from Italian serpentinite area. Acta Oecol.- Oecol. Plant., 3:291–306.
WAHSHA M., BINI C., FONTANA S., WAHSHE A, ZILIOLI D. (2012) Toxicity assessment of contaminated soils from a mining area in Northeast Italy by using lipid peroxidation assay. J. Geoch. Expl., 113:112–117.
WENZEL W.W., BUNKOWSKI M.,PUSCHENREITER M., HORAK O. (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Env. Poll., 123:131-138.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Claudio Bini, Laura Maleci
Copyrights and publishing rights of all the texts on this journal belong to the respective authors without restrictions.
Articles published since 2020 are licensed under a Creative Commons Attribution 4.0 International License:
Previous articles are licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License: