IMPACT OF ACIDIFICATION ON POLLUTANTS FATE AND SOIL FILTRATION FUNCTION

Authors

  • Jarmila Makovniková National Agricultural and Food Centre/ Soil Science and Conservation Research Institute Bratislava, Regional Station Banská Bystica
  • Radoslava Kanianska Matej Bel University, Faculty of Natural Sciences, Department of Environment
  • Miriam Kizeková National Agricultural and Food Centre / Grassland and Mountain Agriculture Research Institute Banská Bystrica

DOI:

https://doi.org/10.6092/issn.2281-4485/4555

Keywords:

acidification, soil reaction, Cd, Pb, soil filtration function

Abstract

The objective of this paper was to investigate the effects of simulated acid load on the fate of inorganic pollutants (Cd, Pb), soil sorption potential, soil filtration func-tion. We made use of a short-term acidification pot experiment with grown plant of spring barley cultivated at 4 different soil types (Fluvisol, Cambisol, Stagnosol, Podzol). The potential of soil filtration was evaluated according to the Eq.: [Soil filtration function]=[Potential of soil sorbents]+[Potential of total content of inor-ganic pollutants]. Potential of soil sorbents (PSS) is defined by qualitative (pH, or-ganic matter quality - A400/600) and quantitative factors (carbon content-Cox, humus layer thickness-H) according to the Eq.:[PSS]=F(pH)+F(A465/665)+F(Cox)*F(H). Acid load significantly influenced soil sorption potential and thus affected increase in Cd and Pb mobility what was reflected in their transfer into the plants. Results of soil filtration function showed significant change of filtration function in Cambisol.

References

properties of humic acid extracted from maize plants: the contribution of lignin. Biochemistry, 82(1): .

ADRIANO D.C. (2001) Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risk of Metals, 2nd edition. New York, Springer, 867 pp.

BLUME H.P., BRÜMMER G. (1991) Prediction of heavy metal behaviour in soil by means of simple field tests, Ecotoxicology and Environmental Safety, 22:164-174.

BOLAN N.S., ADRIANO D.C., CURTIN D. (2003) Soil Acidification and Liming Interactions With Nutrient and Heavy Metal Transformation and Bioavailability. Advances in Agronomy, 78 by Academic Press.

BOLAN N. S., NAIDU R., TILLMAN R. W., SYERS J. K. (1999) Effect of anion sorp-tion on cadmium sorption by soils. Aust J. So// Res., 37:445-460.

BORŮVKA L., DRÁBEK O. (2004) Heavy metal distribution between fractions of humic substances in heavily polluted soils Plant Soil Environ., 50:339-345.

BRÜMMER G.W., GERTH J., HERMS U. (1986) Heavy metal species, mobility and availability in soils. Z. Pfl.-Ernähr. Bodenkde, 149:382–398.

DOMINATI E., PATTERSON M., MACKAY A. (2010) A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological Economics, 69:1858-1868.

DONISA C., MOCANU R., STEINNES E. (2003) Distribution of some major and minor elements between fulvic and humic acid fractions in natural soils. Geoderma, 111:75–84.

HANSEN H.CH.B., KOBZA J., SCHMIDT P., SZAKAL P., BORGGAARD O.K., HOLM P.E., KANIANSKA R., BOGNAROVA S., MAKOVNIKOVA J., MATUSKOVA L., MICUDA R., STYK J. (2001) Environmentálna pôdna chémia (učebné texty pre študentov univerzít environmentálneho zamerania v krajinách EÚ a SR). Program Leonardo da Vinci. Univerzita Mateja Bela, Banská Bystrica, 110p. ISBN 80-88784-36-0.

KOLEKTIV 2011. Unified working methods of soil analysis. Bratislava: VUPOP Bratislava, 124p., ISBN 978-80-89128-89-1.

KONOVOVA M.M. (1966) Soil organic matter. Its nature, its role in soil formation and in soil fertility. Pergamon Press, London, UK.

LIANZHEN LI A., HUIFENG WU A,, CORNELIS A.M., VAN GESTEL B, WILLIE J.G.M., PEIJNENBURG C.D., HERBERT E. ALLEN (2014) Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China, Environmental Pollution 188:144-152.

MAKOVNÍKOVÁ J., BARANČÍKOVÁ G., DLAPA P., DERCOVÁ K. (2006) Inorganic contaminants in soil ecosystem. In Chem. Listy, 100:424-432. MAKOVNÍKOVÁ J. BARANČÍKOVÁ G, PÁLKA B. (2007) Approach to the asseeement of transport risk of inorganic contamination on the immobilisation capability of soil. Plant Soil Envir., 53:365-373.

MAKOVNÍKOVÁ J., BARANCÍKOVÁ G, (2009) Assessment of transport risk of cadmium and lead on the basis of immobilisation capability of soil. Soil and Water Research, 4(1):10-16.

MAKOVNÍKOVÁ J. BARANČÍKOVÁ G. (2012) Acidification and loss of organic matter in context with soil filtration function Journal: GAGS: Archives of Agronomy and Soil Science. Taylor and Francis group. 58(S):83 -86.

NAIDU R., KOOKANA R.S,, OLIVER D., ROGERS S., MCLAUGHLIN M.J. (1996) Contaminants and the Soil Environment in the Australasia-Pacific Region. Kluwer Aca-demic Publishers, p. 717.

NIKITIN B.A. (1972) Metody opredelenija soderžanija gumusa v počve. Agrochimija, 3:123-125.

WALLER P.A., PICKERING W.F. (1993) The effect of pH on the lability of lead and cadmium sorbed on humic acid particles. Chem. Spec. Bioavailab., 5:11–22. ZEIEN H., BRÜMMER G.W. (1989) Chemische Extractionen zur Bestimmung von Schwermetallbindungsformen in Boden. Mitt. DBG, 59:505-510.

YONG R.N., MOHAMED A.M.O., WARKENTIN B. (1992) Principles Contaminant Transport in soils. Amsterdam – Tokyo : Elsevier, 1992, 327 pp. ISBN 0-444-88293-6.

SLOVAK SOIL LOW N .220 /2004. Zbierka zákonov, 220/2004, s. 2290-2292.

Downloads

Published

2014-12-12

How to Cite

Makovniková, J., Kanianska, R., & Kizeková, M. (2014). IMPACT OF ACIDIFICATION ON POLLUTANTS FATE AND SOIL FILTRATION FUNCTION. EQA - International Journal of Environmental Quality, 16(16), 9–20. https://doi.org/10.6092/issn.2281-4485/4555

Issue

Section

Articles