• Giuliano Degrassi International Centre for Genetic Engineering and Biotechnology, Trieste
  • Livia Vittori Antisari Department of Agricultural Sciences, University of Bologna, Bologna
  • Vittorio Venturi International Centre for Genetic Engineering and Biotechnology, Trieste
  • Serena Carbone Department of Agricultural Sciences, University of Bologna, Bologna
  • Antonietta M. Gatti Nanodiagnostics srl, Modena
  • Chiara Gambardella Department of Earth, Environmental and Life Sciences, University of Genova, Genova
  • Carla Falugi Department of Earth, Environmental and Life Sciences, University of Genova, Genova
  • Gilmo Vianello Department of Agricultural Sciences, University of Bologna, Bologna



engineered nanoparticles, Ag, Co, Ni, CeO2, rice, Xanthomonas oryzae


The present work of nanocotoxicity wants to propose a new plant model starting from the rice plant. The model takes into consideration the impact of engineered nanoparticles (Ag, Co, Ni, CeO2, Fe3O4, TiO2) on rice plants that were weakened by infections of Xanthomonas oryzae pv oryzae bacteria. The results indicate that some NPs increase the rice sensitivity to the pathogen while others decrease the virulence of the pathogen towards rice. No-enrichment in component metal concentration is detected in above organs of rice, with exception of Ni-NPs treatment. An imbalance of major elements in infected rice crops treated with NPs was investigated.


BIRBAUM K., BROGIOLI R., SCHELLENBERG M., MARTINOIA E., STARK W.J., GÜNTHER D., ET AL. (2010) No evidence for cerium dioxide nanoparticle translocation in maize plants. Environmental Science & Technology, 44:8718-8723.

CIFUENTES Z., CUSTARDOY L., DE LA FUENTE J., MARQUINA C., IBARRA M.R., RUBIALES D. ET AL. (2010) Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. Journal of Nanobiotechnology, 8:26-34.

CHEN J., WANG X., HAN H. (2013) A new function of graphene oxide emerges: Inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae. J. Nanopart. Res., 15:1658-1672. DOI: 10.1007/s11051-013-1658-6

COENYE T,, HOLMES B., KERSTERS K., GOVAN J.R., VANDAMME P. (1999) Burkholderia cocovenenans (van Damme et al. 1960) Gillis et al. 1995 and Burkholderia vandii Urakami et al. 1994 are junior synonyms of Burkholderia gladioli (Severini 1913) Yabuuchi et al. 1993 and Burkholderia plantarii (Azegami et al. 1987) Urakami et al. 1994, respectively. Int J Syst Bacteriol., 1:37-42.

COTTYN B., VAN OUTRYVE M.F., CEREZ M.T., DE CLEENE M., SWINGS J., MEW T.W. (1996) Bacterial diseases of rice. II. Characterization of pathogenic bacteria associated with sheath rot complex and grain discoloration of rice in the Philippines. Plant Dis., 80:438-445.

Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173–174:19–27. doi:10.1016/j.geoderma.2011. 12.018

FALUGI C., ALUIGI M.G., CHIANTORE M.C., PRIVITERA D., RAMOINO P., GATTI A.M., FABRIZI A., PINSINO A., MATRANGA V. (2012) Toxicity of metal oxide nanoparticles in immune cells of the sea urchin. Mar Environ. Res., 76:114-121.

GATTI A.M., BOSCO P., RIVASI F., BIANCA S., ETTORE G., GAETTI L., MONTANARI S., BARTOLONI G., GAZZOLO D. (2011) Heavy metals nanoparticles in fetal kidney and liver tissues. Front Biosci. (Elite Ed) 3:221-226.

GHOSH M., BANDYOPADHYAY M., MUKHERJEE A. (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere, 81:1253–1262.

IANNITTI T., CAPONE S., GATTI A., CAPITANI F., CETTA F., PALMIERI B. (2010) Intracellular heavy metal nanoparticle storage: progressive accumulation within lymph nodes with transformation from chronic inflammation to malignancy. Int J Nanomedicine, 5:955-960.

LIN D., XING B. (2007) Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut. 150:243–250.

Khodakovskaya M., E. Dervishi, M. Mahmood, Y. Xu, Z. Li, F. Watanabe et al., “Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth”, ACS Nano. 3, pp: 3221-3227, 2009.

Niňo-Liu D.O., Ronald P.C., Bogdanove A.J., 2006 Xantomonas oryzae pathovars: model pathogens of a model crop. Molecular Plant Pathology 7, 303-324.

Ma X., J. Geiser-Lee, Y. Deng, A. Kolmakov, “Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation”, Science of The Total Environment, 408, 3053-3061

MATTIUZZO M, BERTANI I, FERLUGA S, CABRIO L, BIGIRIMANA J, GUARNACCIA C, PONGOR S, MARAITE H, VENTURI V. (2011) The plant pathogen Pseudomonas fuscovaginae contains two conserved quorum sensing systems involved in virulence and negatively regulated by RsaL and the novel regulator RsaM. Environ. Microbiol., 13:145-62.

MNYUSIWALLA A., DAAR A.S., SINGER P.A. (2003) ‘Mind the gap’: science and ethics in nanotechnology. Nanotechnology, 14(3):R9. DOI:10.1088/0957-4484/14/3/201.

SERVIN A.D., CASTILLO-MICHEL H., HERNANDEZ-VIEZCAS J.A., DIAZ B.C., PERALTAVIDEA J.R., GARDEA-TORRESDEY J.L. (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ. Sci. Technol., 46:7637–7643. DOI:10.1021/ es300955b.

SERVIN A.D., MORALES M.I., CASTILLO-MICHEL H., HERNANDEZ-VIEZCAS J.A., MUNOZ B., ZHAO L., NUNEZ J.E., PERALTA-VIDEA J.R., GARDEA-TORRESDEY J.L. (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ. Sci. Technol., 47:11592–11598. DOI:10.1021/es403368j

SHEN Y., RONALD P. (2002) Molecular determinants of disease and resistance in interactions of Xanthomonas oryzae pv. oryzae and rice. Microbes Infect., 4:1361-1367.

SISTROM C.L,, GARVAN C.W. (2004) Proportions, Odds, And Risk. Radiology, 230 (1):12–9.

SONG U., JUN H., WALDMAN B., ROH J., KIM Y., YI J., LEE E.J. (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol. Environ. Saf., 93:60–67. DOI:10.1016/j.


VITTORI ANTISARI L., CARBONE S., FABRIZI A., GATTI A., VIANELLO G. (2011). Response of soil microbial biomass to CeO2 nanoparticles. EQA, 7:135-150.

VITTORI ANTISARI L., CARBONE S., GATTI A., VIANELLO G., NANNIPIERI P. (2014) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environmental Science and Pollution. DOI 10.1007/s11356-014-3509-0

Ying, J (2001) Nanostructured Materials. New York: Academic Press. ISBN 0-12-744451-3.

ZHU Y., CHEN H., FAN J., WANG Y., LI Y., ET AL. (2000) Genetic diversity and disease control in rice. Nature, 406:718–722

WANG Q., MA X., ZHANG W., PEI H., CHEN Y. (2012) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics, 4:1105–1112. DOI:10. 1039/c2mt20149f




How to Cite

Degrassi, G., Vittori Antisari, L., Venturi, V., Carbone, S., Gatti, A. M., Gambardella, C., Falugi, C., & Vianello, G. (2014). IMPACT OF ENGINEERED NANOPARTICLES ON VIRULENCE OF XANTHOMONAS ORYZAE PV ORYZAE AND ON RICE SENSITIVITY AT ITS INFECTION. EQA - International Journal of Environmental Quality, 16(16), 21–33.