Effect of dispersion coefficient on PLNA/gas mass transfer coefficient determination

Authors

  • Mariem Kacem Laboratoire de Tribologie et Dynamique des Systèmes, ENISE, Université de Lyon, Saint-Etienne http://orcid.org/0000-0002-3036-7351
  • Daoud Esrael Laboratoire DEEP: Déchets, Eau, Environnement, Pollution, Villeurbanne
  • Belkacem Benadda Laboratoire DEEP: Déchets, Eau, Environnement, Pollution, Villeurbanne

DOI:

https://doi.org/10.6092/issn.2281-4485/6422

Keywords:

porous media, NAPL/gas mass transfer coefficient, longitudinal dispersivity

Abstract

Organic pollutants are one of the most pollutants in soils. To evaluate pollutant propagation and to apply a remediation technology, it is necessary to know transfer parameters between pollutant and soil components. Evaporation of the Non Aqueous Phase Liquid “NAPL” is one of the most phenomenon, studied mainly when the Soil Vapor Extraction is used. NAPL/gas mass transfer coefficient is the parameter describing this evaporation phenomenon. Many relations are defined to determine this coefficient with neglecting the dispersion coefficient.  In this paper, empirical models for determination of NAPL/gas lumped mass transfer coefficient “l” from literature are tested. Results are compared to analytic solution of the convection dispersion equation results.  The influence of the longitudinal dispersivity aLonl determination was evaluated. It has been shown that dispersion coefficient can be neglected in the model of l determination for pore’s velocity more than 0.1 cm.s-1. The correction is need for low pore’s velocity.

References

ABRIOLA L.M., PENNELL K.D., WEBRE Jr.W.J., LANG J.R., WILKINS M.D. (1999) Persistence and Interphase Mass Transfer of Organic Contaminants in the Unsaturated Zone: Experimental Observations and Mathematical Modeling. Vadose Zone Hydrology: Cutting Across Disciplines, M. B. Parlange and J. W. Hopmans, eds., Oxford University Press, 210-234.

ANWAR A.H.M.F., TIEN T.H., INOUE Y., TAKAGI F. (2003) Mass transfer correlation for nonaqueous Phase Liquis volatilization in porous media. Environ. Sci. Tecnol. 37: 1277-1283

CHAO K.P., ONG S.K., PROTOPAPAS A. (1998) Water-to-air mass transfer of VOCs: laboratory-scale air sparging system. J. Environ. Eng. 124 (11), 1054-1060.

DIGIULIO D. C., VARADHAN R. (2001) Development of Recommendations and Methods to Support Assessment of Soil Venting Performance and Closure. Washington ,DC, 20460 : U. S. Environmental Protection Agency, Office of Research and Development. 394 p.

DIXON K. L., NICHOLS R. L. (2006) Soil vapor extraction system design: A case study comparing vacuum and pore-gas velocity cutoff criteria. Remediat. J. Vol. 17, n°1, p. 12.

HARPER B.M., STIVER W.H., ZYTNER R.G. (2003) Nonequilibrium Nonaqueous Phase Liquid Mass Transfer Model for Soil Vapor Extraction Systems. Journal of Environmental Engineering. 129(8):745- 754.

MILER C.T., POIRIER-MCNEILL M.M., MAYER A.S., (1990) Dissolution of trapped nonaqueous phase liquids: mass transfer characteristics. Water Resources Researches 26 (11), 2783-2796

POWERS S.E., ABRIOLA L.M., WEBRE JR. W.J. (1992) An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: steady state mass tranfer rates. Water Resources Researches 28 (10), 2691-2705

RATHFELDER K.M., YEH W.W.G., MACKAY D. (1991) Mathematical simulation of soil vapor extraction systems: model developpement and numerical examples. J. Contam. Hydrol. 8, 263-297.

RATHFELDER K.M., LANG J.R., ABRIOLA L.M., (2000) A numerical model (MISER) for the simulation of coupled physical, chemical and biological processes in soil vapor extraction and bioventing systems. J. Contam. Hydrol. 43, 239-270.

U.S. ACE. Soil Vapor Extraction and Bioventing. Washington, USA : U.S. ACE, 2002. 424 p.

VAN GENUCHTEN M. J., ALVES W. J. (1982) Analytical solutions of the one-dimensional convective-dispersive solute transport equation. Washington, USA, 149 p.

VAN DER HAM, A.J.G., BROUWERS, H.J.H. (1998) Modelling and experimental investigation of transient, nonequilibrium mass transfer during steam stripping of a nonaqueous phase liquid in unsaturated porous media. Water Resour. Res. Vol 34 (1), pp. 47-54.

WEBER Jr. W.J., DIGIANO F.A. (1996) Process Dynamics in Environmental Systems. Wiley, New York

WILKINS M. D., ABRIOLA L. M., PENNELL K. D. (1995) An Experimental Investigation of Rate-Limited Nonaqueous Phase Liquid Volatilization in Unsaturated Porous Media: Steady State Mass Transfer. Water Resour. Res. Vol. 31, n°9, p. 13.

YOON H., KIM J. H., LILJESTRAND H. M., KHIM J. (2002) Effect of water content on transient nonequilibrium NAPL-gas mass transfer during soil vapor extraction. J. Contam. Hydrol. Vol. 54, n°1-2, p. 17.

ZHAO L. Three-dimensional soil vapour extraction modeling. Guelph, Canada: University of Guelph, 2007. 296 p.

Downloads

Published

2017-02-04

How to Cite

Kacem, M., Esrael, D., & Benadda, B. (2016). Effect of dispersion coefficient on PLNA/gas mass transfer coefficient determination. EQA - International Journal of Environmental Quality, 22, 33–42. https://doi.org/10.6092/issn.2281-4485/6422

Issue

Section

Articles