Relationships between humus profiles and C cycling, first results from a Mediterranean pine forest

Authors

  • ROMINA LORENZETTI Research Center Agriculture and Environment (AA) Via di Lanciola, 12/A 50125 Firenze,

DOI:

https://doi.org/10.6092/issn.2281-4485/8435

Keywords:

humus profile, soil, GHG, organic Carbon, methane

Abstract

Pine species used for land restoration in the Mediterranean basin since the late 19th century are nowadays showing symptoms of degradation. Forest degradation may reduce the forest potential to act as a C sink, or even increase the C losses through greenhouse gas (GHG) emissions. Microbial processes strongly affect SOM decomposition and therefore C fluxes. Since the first and most important modifications of microbial processes occur within humus profiles, humus characteristics and structure might affect microbial processes and GHG emissions. The study was carried out to relate C cycling in a degraded pine forest with the morphology and characteristics of the humus profiles.

The study area was located near Florence (Central Italy) in a reforest area planted with Black pine, Brutia pine, and Cypress. In spring 2016, 9 humus profiles were described, sampled and classified, and CO2 and CH4 fluxeswere measured. Humus profiles were analyzed for bulk density, particle size, N, C, lime content and pH. Bio macroaggregates of the first mineral horizon were separated by moist sieving in three size classes ( <1 mm, 1-4 mm, >4 mm) for the humus classification. Statistical relationships were checked by a Spearman test.

Eumacroamphi was the main humus form, while Dysmull and Pachiamphi were less frequent. There were significant correlations between CH4 fluxes and both the thickness of the transition from organic to inorganic horizons, and the percentage of aggregates in different size classes. CO2 emission did not provide significant correlations with humus features. These first results suggest that the activity of methanotrophic bacteria responsible for CH4 uptake might be lower where the thickness of the transition between the organic and mineral horizons is larger.

References

Aaltonen, H., Pumpanen, J., Pihlatie, M., Hakola, H., Hellén, H., Kulmala, L., Vesala T., Bäck, J. , 2011. Boreal pine forest floor biogenic volatile organic compound emissions peak in early summer and autumn. Agricultural and Forest Meteorology, 151(6), 682-691.

Andreetta, A., Ciampalini, R., Moretti, P., Vingiani, S., Poggio, G., Matteucci, G., Tescari, F., Carnicelli, S., 2011. Forest humus forms as potential indicators of soil carbon storage in Mediterranean environments. Biol. Fertil. Soils, 47, 31–40.

Blake, G.R., Hartge, K.H. Bulk Density, in: Klute, A. (Ed.), 1986. Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods. Second Edition, Agronomy Monograph N. 9. Soil Science Society of America, Madison, USA,pp. 363–375.

Carletti P., Vendramin E., Pizzeghello D., Concheri G., Zanella A., Nardi S., Squartini A., 2009. Soil humic compounds and microbial communities in six spruce forests as function of parent material, slope aspect and stand age. Plant and Soil.. vol. 315, pp. 47-65

Cenni, E., Bussotti, F.,Galeotti, L., 1998. The decline of a Pinus nigra Arn. reforestation stand on a limestone substrate: the role of nutritional factors examined by means of foliar diagnosis. In Annales des sciences forestières, Vol. 55, No. 5, pp. 567-576. EDP Sciences.

Coleman D.C., Crossley D.A. Jr., Hendrix P.F., 2004. Fundamentals of soil ecology, 2nd ed. Elsevier, Amsterdam, The Netherlands

Costantini, E.A.C.; Barbetti, R.; L’Abate, G., 2009. The soil aridity index to asses desertification risk for Italy. Advances in GeoEcology. Catena Ed.

De Nicola, C., Zanella, A., Testi, A., Fanelli, G., Pignatti, S., 2014. Humus forms in a Mediterranean area (Castelporziano Reserve, Rome, Italy): classification, functioning and organic carbon storage. Geoderma, 235, 90-99.

De Vos, B., Cools, N., Ilvesniemi, H., Vesterdal, L., Vanguelova, E., Carnicelli, S., 2015. Benchmark values for forest soil carbon stocks in Europe: results from a large scale forest soil survey. Geoderma, 251-152, 33–46.

Di Biase G., Falsone G., Graziani A., Vianello G., Antisari L.V., 2015. Carbon Sequestration in Soils Affected by Douglas Fir Reforestation in Apennines (Northern Italy). EQA-International Journal of Environmental Quality, 17(1), 1-11.

Dong Y., Scharffe D., Lobert J. M., Crutzen P. J., Sanhueza E., 1998. Fluxes of CO2, CH4 and N2O from a temperate forest soil: the effects of leaves and humus layers. Tellus B: Chemical and Physical Meteorology, , 50 (3), 243-252.

Ferran A. 1997. La fertilitat de sòls forestals en la regeneració després dels foc de diferents ecosistemes mediterranis. PhD Thesis, Universitat de Barcelona,.

Fons J., 1995. Avaluació de la fertilitat de sòls forestals mediterranis. El cas de les pinedes de pi blanc (Pinus halepensis Mill.). PhD Thesis, Universitat de Barcelona.

Gasparini, P., Tabacchi, G., 2011. L’Inventario Nazionale delle Foreste e dei serbatoi forestali di Carbonio INFC 2005. Secondo inventario forestale nazionale italiano. Metodi e risultati.

Galvan P., Ponge J.-F., Chersich S., Zanella A.. 2008. Humus Components and Soil Biogenic Structures in Norway Spruce Ecosystems. Soil Sci Soc Am J.; 72: 548-557.

Gee, G. W., Bauder, J. W., 1986. Particle-size analysis. Methods of soil analysis: Part 1—Physical and mineralogical methods, methodsofsoilan1, 383-411.

Gillman G. P., 1979. A proposed method for the measurement of exchange properties of highly weathered soils. Australian Journal of Soil Research, 17, 129-139.

Golebiowska, J., Ryszkowski, L. , 1977. Energy and carbon fluxes in soil compartments of agroecosystems. In: Lohm, U., Persson, T. (Eds.), Soil Organisms as Components of Ecosystems. Ecol. Bull. (Stockholm), 25, 274–283

Greiffenhagen, A., Wessolek, G., Facklam, M., Renger, M., Stoffregen, H., 2006. Hydraulic functions and water repellency of forest floor horizons on sandy soils. Geoderma, 132(1), 182-195.

Halmeenmäki, E., Heinonsalo, J., Santalahti, M., Fritze, H., Pihlatie, 2015. M. Above-and belowground CH4 fluxes from boreal forest shrubs and Scots pine.

Hendrix, P.F., Parmelee, R.W., Crossley Jr., D.A., Coleman, D.C., Odum, E.P., Groffman, P.M., 1986. Detritus food webs in conventional and no-tillage agroecosystems. Bioscience, 36, 374–380.

INFC, 2005. 2° INVENTARIO FORESTALE NAZIONALE [online, verified 12-7-2018] https://www.sian.it/inventarioforestale/jsp/dati_carquant_tab.jsp?menu=3

IPCC, IPCC, 2007 fourth assessment report, working group III. Chapter 9, Forestry,. Available online at:www.ipcc.ch.

IUSS Working Group WRB, World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources Reports 103. FAO, Rome, 2007.

IUSS Working Group WRB, World reference base for soil resource, 2014. International soil classification system for naming soils and creating legends for soil maps.

Kasprzak, K., 1982. Review of enchytraeid (Oligochaeta, Enchytraeidae) community structure and function in agricultural ecosystems. Pedobiologia, 23, 217–232.

Kleber, M., Nico, P.S., Plante, A., Filley, T., Kramer, M., Swanston, C., Sollins, F., 2011. Old and stable soil organic matter is not necessarily chemically recalcitrant:implications for modeling concepts and temperature sensitivity. Global ChangeBiol., 17, 1097–1107, http://dx.doi.org/10.1111/j.1365-2486.2010.02278.

Klinka K., Wang Q., Carter R.E., 1990. Relationships among humus forms, forest floor nutrient properties, and understory vegetation. For. Sci., 36, 564-581.

Kögel-Knabner, I., Matzner, E., 2008. Soils as a source and sink for CO2–mechanisms and regulation of organic matter stabilization in soils. Plant Nutr. Soil Sci., 171, 1–132.

Kuzyakov, Y. ,2006. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448 doi:10.1016/j.soilbio.2005.08.020

Mallik A.U. Newton, P.F, 1988. Inhibition of black spruce seedling growth by forest-floor substrates of Central Newfoundland. For. Ecol. Manage., 23:273–283.

Matteucci M., Gruening C., Goded Ballarin I., Seufert G., Cescatti A. 2015. Components, drivers and temporal dynamics of ecosystem respiration in a Mediterranean pine forest. Soil Biology & Biochemistry, 88, 224-235.

Nocentini, S. U. S. A. N. N. A, 1995. La rinaturalizzazione dei rimboschimenti. Una prova su pino nero e laricio nel complesso di Monte Morello (Firenze). L’Italia forestale e montana, 4, 425-435.

Ponge J.F., Delhaye 1995. L.. The heterogeneity of humus profiles and earthworm communities in a virgin beech forest. Biol. Fertil. Soils, 20, 24-32.

Ponge J.F., Arpin P., Sondag F., Delecour F., 1997. Soil fauna and site assessment in beech stands of the Belgian Ardennes. Can. J. For. Res., 27, 2053-2064.

Poesen J., Lavee H. , 1994. Rock fragments in top soils: significance and processes. Catena, 23: 1–28

Rezgui, F., Gharbi, F., Zribi, L., Mouillot, F., Ourcival, J. M., Hanchi, B., 2016. Soil respiration behaviour in a mediterranean aleppo pine forest in north Tunisia. Applied ecology and environmental research, , 14(4), 343-356.

Romanyà, J., Casals, P., Cortina, J., Bottner, P., Coûteaux, M. M., Vallejo, V. R. , 2000. CO2 efflux from a Mediterranean semi-arid forest soil. II. Effects of soil fauna and surface stoniness. Biogeochemistry, 48(3), 283-306.

Rosenkranz P., Br¨uggemann N., Papen H., Xu Z., Seufert G., Butterbach-Bahl K., 2006. N2O, NO and CH4 exchange, and microbial N turnover over a Mediterranean pine forest soil. Biogeosciences, 3, 121–133.

Salmon S., Mantela J., Frizzera L., Zanella A., 2006. Changes in humus forms and soil animal communities in two developmental phases of Norway spruce on an acidic substrate. Forest Ecology and Management, 237: 47-56.

Sanhueza, E., Dong, Y., Scharffe, D., Lobert, J. M., Crutzen, P. J., 1998. Carbon monoxide uptake by temperate forest soils: The effects of leaves and humus layers. Tellus B: Chemical and Physical Meteorology, 50(1), 51-58.

Savi F., Di Bene C., Canfora L., Mondini C., Fares S., 2016. Environmental and biological controls on CH4 exchange over an evergreen Mediterranean forest. Agricultural and Forest Meteorology, 226–227, 67–79.

Tate, K.R., 2015. Soil methane oxidation and land–use changed from process to mitigation. Soil Biology & Biochemistry 80, 260–272.

Topoliantz S., J.F. Ponge, 2000. Influence of site conditions on the survival of Fagus sylvatica seedlings in an old-growth beech forest. J. Veg. Sci., 11:369–374.

Van Vliet, P. C. J., Beare, M. H., Coleman, D. C., Hendrix, P. F.,2004. Effects of enchytraeids (Annelida: Oligochaeta) on soil carbon and nitrogen dynamics in laboratory incubations. Applied Soil Ecology, 25(2), 147-160.

Wallwork J.A,. 1970. Ecology of soil animals. McGraw-Hill, London.

Wolters , 1988. V. Effects of Mesenchytraeus glandulosus (Oligochaeta, Enchytraeidae) on decomposition processes. Pedobiologia, 32, 387–398.

Zanella, A., 2001. Tomasi M., De Siena C., Frizzera L., Jabiol B., Nicolioni G., Humus forestali: manuale di ecologia per il riconoscimento e l'interpretazione: applicazione alle faggete. Centro di ecologia alpina,.

Zanella A., Jabiol B., Ponge J.F., Sartori G., de Waal R., van Delft B., Graefe U., Cools N., Katzensteiner K., Hager H., Englisch M., Brethes A., Broll G., Gobat J.M., Brun J.-J., Milbert G., Kolb E., Wolf U., Frizzera L., Galvanq P., Kollir R., Baritzs R., Kemmerse R. , Vaccat A., Serrat G., Banasu D., Garlatov A., Chersichw S., Klimoz E. Langohrg R.., 2011a. European humus forms reference base., http://hal.archivesouvertes.fr/docs/00/56/17/95/PDF/Humus_Forms_ERB_31_01_2011.pdf

Zanella, A., Jabiol, B., Ponge, J. F., Sartori, G., De Waal, R., Van Delft, B., ... & Englisch, M., 2011b. A European morpho-functional classification of humus forms. Geoderma, 164(3), 138-145.

Downloads

Published

2019-01-02

How to Cite

LORENZETTI, R. (2019). Relationships between humus profiles and C cycling, first results from a Mediterranean pine forest. EQA - International Journal of Environmental Quality, 33, 37–53. https://doi.org/10.6092/issn.2281-4485/8435

Issue

Section

Articles