Assessment of naturally occurring 40K, 232Th and 238U and their associated radiological hazard indices in soils used for building in Ondo West Local Government Area, Southwestern, Nigeria

Authors

  • Lasun T. Ogundele University of Medical Sciences, Onod http://orcid.org/0000-0002-3239-525X
  • Patrick O. Ayeku Department of Biological Sciences, Wesley University, Ondo
  • Samuel O. Inuyomi Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife
  • Oluwakunle M. Ogunsakin Department of Physical Sciences, Wesley University, Ondo
  • Olubusayo F. Oladejo Department of Physics, Osun State University, Osogbo
  • Isaiah A. Adejoro Department of Chemistry, University of Ibadan

DOI:

https://doi.org/10.6092/issn.2281-4485/9473

Keywords:

Natural Radionuclide, Soil, Exposure, Radiological indices

Abstract

The naturally occurring 40K, 232Th and 238U radionuclide contents in the soil used as building materials in Ondo West Local Government, Southwest Nigeria were determined using gamma spectrometric technique. The radiological hazards were estimated by employing several indices consisting of radium equivalent (Raeq), representative level index (RLI), activity utilization index (AUI), absorbed dose (D), annual effective dose, external hazard index (Hex), internal hazard index (Hin) and gamma index (Iᵧ). The average activity concentrations of 238U, 40K, 232Th and Raeq were 171.8, 146.2, 19.8 and 211. 3 Bqkg-1 while the average values of Hin, Hex, RLI, D, AED, ELCR, AUI and Iᵧ were, 1.0, 0.6, 0.2, 97.4, 0.5, 3.9 x 10-3, 1.8 and 0.7, respectively. The multivariate statistical analysis was employed to identify the relationships between the radionuclides and the estimated radiological hazard parameters. The estimated radiological indices were within the internationally acceptable limits confirming the safe use of these soil for building construction for human dwelling without any radiological implications.

References

Ademola, A. K., Bello, A. K., Adejumo, A. C., 2014. Determination of natural radioactivity and hazard in soil samples in and around gold mining area in Itagumodi south western, Nigeria. J. Rad Res. Appl. Sci., 7, 249–255.

Ademola, A. K., Olaoye, M. A., Abodunrin, P. O., 2015. Radiological safety assessment and determination of heavy metals in soil samples from some waste dumpsites in Lagos and Ogun state, south-western, Nigeria. J. Rad. Res. Appl. Sci., 8, 148–153.

Ahmad, N., Mohamad Suhaimi Jaafar, M. S., Bakhash, M., Rahim, M. 2015. An overview on measurements of natural radioactivity in Malaysia. J. Rad. Res. Appl. Sci., 8, 136–141.

Akozcan S., 2014. Natural and artificial radioactivity levels and hazards of soils in the Kucuk menders basin, Turkey. Environ Earth Sci. 71: 4611 - 614.

Alajeeli, A., Elmahroug, Y., Mohammed, S., Trabelsi, A., 2019. Determination of natural radioactivity and radiological hazards in soil samples: Alhabba and

Abuscabkh agricultural projects in Libya. Environ Earth Sci 78: 194-102.

Alam, M. N., Miah, N. M. H., Chowdhury, M. I., Kamal, M., Ghose, S., Islam, M. N., 1999. Radiation dose estimation from the radioactivity analysis of lime and cement used in Bangaladesh. J. Environ. Rad., 42(1), 77–85.

Bereka, J. Mathew, P. J., 1985. Natural radioactivity of Australian building materials, wastes and by-products. Health Phys., 48, 87–95.

Chandrasekaran, A., Ravisankar, R., Senthilkumar, G., Thillaivelavan, K., Dhinakaran, B., Vijayagopal, P., 2014. Spatial distribution and lifetime cancer risk due to gamma radioactivity in yelagiri hills, Tamilnadu, India. Egyptian J. Basic Appl. Sci., 1(1), 38–48.

Darko, E. O., Tetteh, G. K., Akaho, E. H. K., 2005. Occupational radiation exposure to norms in a gold mine. Rad. Prot. Dos., 114(4), 538–545.

EC (1999). European Commission on radiological protection, principles concerning the natural radioactivity of building materials. directorate-general environment, nuclear safety and civil protection. 8

El-Gamal, A., Nasr, S., El-Taher, A., 2007. Study of the spatial distribution of natural radioactivity in upper Egypt Nile River sediment. Rad. Measure., 42,475–465.

Feroz, A. M., Sajad, A. R., 2015. Measurement of radioactive nuclides present in soil samples of district ganderbal of Kashmir province for radiation safety purposes. J. Rad. Res. Appl. Sci., 8, 155–159.

Gao, J., Cao, C., Luo, Z., Zhang, X., 2014. Inhalation exposure to particulate matter in rooms with under floor air distribution. Indoor Built Environ., 23, 236–245.

Gbenu, S. T., Oladejo, O. F., Alayande, O., Olukotun, S. F., Fasasi, M. K. (2016). Assessment of radiological hazards of quarry products from southwest Nigeria. J. Rad. Res. Appl. Sci., 9, 20– 25.

Hassan, N. N., Khoo, K. S., 2014. Measurement of natural radioactivity and assessment of radiation hazard indices in soil samples at Pengerang,

ICRP, 2007. ICRPInternational Commission on Radiological Protection, (2007) Recommendations of the ICRP. Annals of the ICRP, 7, 2–4. Technical Report.

Jaillad, K. N., 2016. Radiation hazard indices and excess lifetime cancer risk in sand from the northern and eastern regions of Kuwait. Environ Earth Sci. 75: 156.

Kaliprasad, C. S., Vinutha, P. R., Narayana, Y., 2017. Natural radionuclides and radon exhalation rate in the soils of cauvery river basin. Air, Soil, Water Res., 10, 1–7.

Karahan, G., Bayulken, A. (2000). Assessment of gamma dose rates around Istanbul, Turkey. J. Environm. Rad, 47, 221–237.

Kota Tinggi, Johoor. AIP Conference Proceed., 190(doi: 10.1063/1.4866130):1584. IAEA, 2006. Database of prompt gamma rays from slow neutron capture for elemental analysis. Vienna. Technical report.

Kothai IVS, P., Prathibha, P., Hopke, Philip K., Pandit VDP, G.G., (2008). Source apportionment of coarse and fine particulate matter at Navi Mumbai, India. Aero Air Qual Res. 8: 423–436.

Krieger, R., 1981. Radioactivity of construction materials. Betonwerk Fertigteil-Tech, 47, 468–473.

Laili, Z., Ibrahim, M. Z., Mahmud, A. N., Omar, M., 2012. Natural radioactivity content and radionuclides lechability of bricks containing industrial waste, seminar Nuclear Malaysia 2012 (rnd12), dewan tun dr. ismail, Agensi Nuklear Malaysia, 26-28 September 2012.

Marcazzan, G. M., Ceriani, M., Valli, G., and Vecchi, R. (2003). Source Apportionment of PM10 and PM2:5 in Millan (Italy) using Receptor modeling. Sci Total Environ, 317:137–147.

Mavi, B., Akkurt, I. (2010). Natural radioactivity and radiation hazards in some building materials used in Isparta, Turkey. Rad. Phys. Chem., 79, 933–937.

Mir, F. A., RAther, S. A., 2015. Measurement of radioactive nuclide present in soil samples of district ganderbal of Kashmir province for radiation safety purposes. J. Rad. Res. Appl. Sci., 8, 155 – 159.

Mohammed, R. S. and Hammed R. S. 2017. Estimation of excess lifetime cancer risk and radiation hazard indices in southern Iraq. Environ Earth Sci 76:303.

Nwaka, B. U., Emelue, H. U., Nwokocha, C., 2001. Natural radiation levels and health hazard indices of soil in Owerri Nigeria. The Intern. J. Eng. Sci., 3(12), 5–9.

Ogundele, L. T., Olasinde, R. T., Owoade, O. K., Olise, F. S., (2018). Composition and Source Identification of Chemical Species in Dust from Selected Indoor Environments in Ile‑Ife, Nigeria. Earth Syst. Environ. (2018) 2:323–330.

Pekey, H., Bakoglu, M., Pekey, B., (2005). Sources of heavy metals in the Western Bay of Izmit surface sediments, Int. J. Environ. Anal. Chem. 85 (14); 1025–1036.

Qureshi, A., A., Tariq, S., Din, K., U., U., Calligaris, C.,Waheed, A., 2014. Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan. J. Radiat. Res. Appl. Sci., 7, 438–447.

Raghu, Y., Ravissankar, R., Chandrasekran, A., P., V., Venkatraman, 2017. Assessment of natural radioactivity and radiological hazzards in building materials used in the Tiruvannmalali District, Tamilnadu, India, using a statistical approach. J. Taibah Uni. Sci., 11, 523–533.

Ravisankar, R., Vanasundari, K., Chandrasekaran, A., Rajalakshmi, A., Suganya, M., Vijayyagopal, P., Meenakshisundaram, V. 2012. Measurement of natural radioactivity in building materials of namakkal, tamil nadu, India using gamma ray spectrometry. Appl. Rad. Isot., 70, 699–704.

Ravisankar, R., Vanasundari, K., Suganya, M., Raghu, R., Rajalakshmi, A., Chandrasekaran, A., Sivakunar, S., Chandramo-ha, S., Vijayagopal, P., Venkatraman, B., 2014. Multivariate statisticalanalysis of radiological data of building materials used in Tiruvan-namalai, Tamilnadu, India. Appl. Rad. Isot., 85, 114–127.

Senthilkumar, G., Raghu, Y., Sivakumar, S., Chandrasekaran, A., Anand, D. P., Ravisankar, R., 2014. Natural radioactivity measurement and evaluation of radiological hazards in some commercial flooring materials used in Thiruvannamalai, Tamilnadu, India. J. Rad. Res. Appl. Sci., 7, 116 – 122.

Senthilkumar, R. D., Narayanaswamy, R., 2016. Assessment of radiological hazards in the industrial effluent disposed soil with statistical analyses. J. Rad. Res. Appl. Sci., 9, 449–456.

Sivakumar, R. 2014. An assessment of natural radioactivity levels and radiation hazards in the soil of Coonoor, South India. Environ earth Sci 72: 5063 – 5071.

Solehah, A. R., Yasir, M. S., Samat, S. B., 2016. Activity concentration, transfer factors and resultant radiological risk of 226Ra, 232Th, and 40K in soil and some vegetables consumed in Selangor, Malaysia. AIP Conference Proceedings, (doi: 10.1063/1.4966802).

Sroor, S. M. E., Ahmad, F., Abdul-Halim, A. S., 2001. Natural radioactivity and radon exhalation rate of soil in southern Egypt. Appl. Rad. Isot., 55, 873–879.

Tufail, M., Akhhtar, N., Javied, S., Hamid, T., 2007. Natural Radioactivity hazard of building bricks fabricated from saline soil of two district of Pakistan. J. Rad. Prot., 27, 481–492.

UNSCEAR, 2000. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources Effects and Risks of Ionizing Radiation. https://inis.iaea.org/search/search.aspxorig. RN:20037090. Accessed on September 2018.

UNSCEAR, 2001. Sources and effects of ionizing Radiation. United Nations Scientific committee on Effects of Atomic Radiation (UNSCER), 2001. Report to the General Assembly.

UNSCEAR, 2010. Sources and effects of ionizing radiation. united nations scientific committee on effects of atomic radiation (UNSCEAR), 2010. report to the general assembly with scientific annexes, vol 1 New York, United Nation.

USEPA, 2017. United States Environmental protection Agency, Radiation Health Effects. Technical report.

Usikalu, M. R., Akinyemi, M. L., Achuka, J., 2014. Investigation of radiation levels in soil samples collected from selected locations in Ogun State, Nigeria. IERI Procedia, 9, 156–161.

Xinwei, L., Lingquig, W., Xiaodan, J., Leipeng, Y., Gelian, D., 2006. Specific activity and hazards of archeozoiccambrian rock samples collected from the Weibei area of Xhaanxi, China. Rad. Prot. Dos., 118(3), 352–359.

Ziqiang, P., Yin, Y., Mingqiang, G., 1988. Natural radiation and radioactivity in China. Rad. Prot. Dos., 24, 88–99.

Downloads

Published

2019-11-11

How to Cite

Ogundele, L. T., Ayeku, P. O., Inuyomi, S. O., Ogunsakin, O. M., Oladejo, O. F., & Adejoro, I. A. (2020). Assessment of naturally occurring 40K, 232Th and 238U and their associated radiological hazard indices in soils used for building in Ondo West Local Government Area, Southwestern, Nigeria. EQA - International Journal of Environmental Quality, 37(2), 11–21. https://doi.org/10.6092/issn.2281-4485/9473

Issue

Section

Articles